scholarly journals Disrupted Blood‐Brain Barrier and Mitochondrial Impairment by Autotaxin–Lysophosphatidic Acid Axis in Postischemic Stroke

Author(s):  
Susmita Bhattarai ◽  
Sudha Sharma ◽  
Hosne Ara ◽  
Utsab Subedi ◽  
Grace Sun ◽  
...  

Background The loss of endothelial integrity increases the risk of intracerebral hemorrhage during ischemic stroke. Adjunct therapeutic targets for reperfusion in ischemic stroke are in need to prevent blood‐brain barrier disruption. Recently, we have shown that endothelial permeability is mediated by lysophosphatidic acid (LPA), but the role of autotaxin, which produces LPA, remains unclear in stroke. We investigate whether autotaxin/LPA axis regulates blood‐brain barrier integrity after cerebral ischemia. Methods and Results Ischemic stroke was induced in mice by middle cerebral artery occlusion for 90 minutes, followed by 24‐hour reperfusion. The therapeutic efficacy of autotaxin/LPA receptor blockade was evaluated using triphenyl tetrazolium chloride staining, Evans blue permeability, infrared imaging, mass spectrometry, and XF24 analyzer to evaluate blood‐brain barrier integrity, autotaxin activity, and mitochondrial bioenergetics. In our mouse model of ischemic stroke, the mRNA levels of autotaxin were elevated 1.7‐fold following the cerebral ischemia and reperfusion (I/R) group compared with the sham. The enzymatic activity of autotaxin was augmented by 4‐fold in the I/R group compared with the sham. Plasma and brain tissues in I/R group showed elevated LPA levels. The I/R group also demonstrated mitochondrial dysfunction, as evidenced by decreased ( P <0.01) basal oxygen consumption rate, mitochondrial ATP production, and spare respiratory capacity. Treatment with autotaxin inhibitors (HA130 or PF8380) or autotaxin/LPA receptor inhibitor (BrP‐LPA) rescued endothelial permeability and mitochondrial dysfunction in I/R group. Conclusions Autotaxin‐LPA signaling blockade attenuates blood‐brain barrier disruption and mitochondrial function following I/R, suggesting targeting this axis could be a new therapeutic approach toward treating ischemic stroke.

2018 ◽  
Vol 28 (3) ◽  
pp. 283-288 ◽  
Author(s):  
Zhong‐Song Shi ◽  
Gary R. Duckwiler ◽  
Reza Jahan ◽  
Satoshi Tateshima ◽  
Viktor Szeder ◽  
...  

Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Hui Yang ◽  
Zhen Hui ◽  
Du Juan Sha ◽  
Yun Xu

Background: The induction of angiogenesis and maintain the integrity of the blood brain barrier (BBB) after stroke may enhance neurorestorative processes. Panaxatriol Saponins (PTS), extracted from traditional Chinese herb Panaxnotoginseng, could noticeably prevent BBB disruption and promote angiogenesis in rodent stroke model. Methods: Middle cerebral artery occlusion (MCAO) model were applied to mimic acute stroke in vivo. Ischemic infarct volume and neurological functions were evaluated through 2,3,5-triphenyltetrazolium chloride (TTC) staining and Longa Scores (LS) respectively. The micro-PET scan was adopted to assess cerebral perfusion; evans blue extravasation assay was used to test BBB permeability; real time PCR and Western blot were used to evaluate the level of vascular growth factors, pro-inflammation factors, the components of Sonic hedgehog (Shh) pathway and NF-κB pathway. Enzyme Linked Immunosorbent Assay (ELISA) was used to detect the levels of pro-inflammation factors in the brain. The capillaries density in ischemic penumbra and tight junction in BBB were measured by immunofluorescence staining. Results: PTS treatment improved neurological function and reduced infarct volume in MCAO-rats. The result of micro-PET scan indicated that PTS could significantly enhance cerebral perfusion after MCAO operation. Treatment of PTS significantly attenuated BBB destruction. PTS could significantly increase the VEGF, Ang-1, VEGFR-2, Tie-2, CD31 and α-SMA mRNA expression at 3 d and 7 d after MCAO compared to vehicle group. Moreover, the expression levels of inflammation factors were decreased after PTS treatment. The co-immunofluorescence staining of α-SMA and Brdu with CD31 respectively showed that PTS promotes angiogenesis and endothelial cell proliferation after MCAO. Meanwhile, co-immunofluorescence staining of Claudin-5, Occludin and ZO-1 with CD31 respectively showed that PTS could protect tight junction from ischemia/reperfusion injury. PTS could also activate Shh pathway and inhibited NF-κB pathway. Conclusions: PTS alleviated ischemic stroke injury through attenuates blood-brain barrier disruption and promotes angiogenesis. PTS could be a potential medication for combating ischemic brain injury.


Stroke ◽  
2018 ◽  
Vol 49 (6) ◽  
pp. 1479-1487 ◽  
Author(s):  
Angelika Hoffmann ◽  
Tassilo Dege ◽  
Reiner Kunze ◽  
Anne-Sophie Ernst ◽  
Holger Lorenz ◽  
...  

Stroke ◽  
2011 ◽  
Vol 42 (12) ◽  
pp. 3600-3605 ◽  
Author(s):  
Olli S. Mattila ◽  
Daniel Strbian ◽  
Jani Saksi ◽  
Tero O. Pikkarainen ◽  
Ville Rantanen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document