stroke model
Recently Published Documents


TOTAL DOCUMENTS

689
(FIVE YEARS 133)

H-INDEX

55
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Meizhu Zheng ◽  
Mi Zhou ◽  
Minghui Chen ◽  
Yao Lu ◽  
Dongfang Shi ◽  
...  

Daidzein is a plant isoflavonoid primarily isolated from Pueraria lobate Radix as the dry root of P. lobata (Wild.) Ohwi, have long been used as nutraceutical and medicinal herb in China. Despite the report that daidzein can prevent neuronal damage and improve outcome in experimental stroke, the mechanisms of this neuroprotective action have been not fully elucidated. The aim of this study was to determine whether the daidzein elicits beneficial actions in a stroke model, namely, cerebral ischemia/reperfusion (I/R) injury, and to reveal the underlying neuroprotective mechanisms associated with the regulation of Akt/mTOR/BDNF signal pathway. The results showed that I/R, daidzein treatment significantly improved neurological deficits, infarct volume, and brain edema at 20 and 30 mg/kg, respectively. Meanwhile, it was found out that the pretreatment with daidzein at 20 and 30 mg/kg evidently improved striatal dopamine and its metabolite levels. In addition, daidzein treatment reduced the cleaved Caspase-3 level but enhanced the phosphorylation of Akt, BAD and mTOR. Moreover, daidzein at 30 mg/kg treatment enhanced the expression of BDNF and CREB significantly. This protective effect of daidzein was ameliorated by inhibiting the PI3K/Akt/mTOR signaling pathway using LY294002. To sum up, our results demonstrated that daidzein could protect animals against ischemic damage through the regulation of the Akt/mTOR/BDNF channel, and the present study may facilitate the therapeutic research of stroke.


2022 ◽  
Vol 417 ◽  
pp. 113561
Author(s):  
Hidekazu Kaneko ◽  
Masakazu Namihira ◽  
Shoko Yamamoto ◽  
Noriaki Numata ◽  
Koji Hyodo

2021 ◽  
Vol 4 (4) ◽  
pp. 592-612
Author(s):  
Ye Feng ◽  
Qian Xu ◽  
Raymond Tak Fai Cheung

Cerebral ischemia induces oxidative injury and increases the intracellular calcium ion concentration to activate several calcium-dependent proteases such as calpains. Calpain activation leads to various necrotic and apoptotic processes. Calpeptin is a potent, cell-permeable calpain inhibitor. As a strong antioxidant and free radical scavenger, melatonin shows beneficial effect in rodent models of focal cerebral ischemia when given prior to ischemia or reperfusion. This study was focused on the neuroprotective effects of melatonin and/or calpeptin given after onset of reperfusion. For this purpose, right-sided middle cerebral artery occlusion (MCAO) for 90 minutes followed by 24 or 72 hours of reperfusion was performed in male Sprague Dawley rats, then, melatonin 50 or 150 µg/kg, calpeptin 10, 15 or 50 µg/kg or a combination of melatonin 50 µg/kg plus calpeptin 15 or 50 µg/kg were injected via an intracerebroventricular route at 15 minutes after onset of reperfusion. Melatonin or calpeptin tended to reduce the relative infarct volume and significantly decreased the neurological deficit at 24 hours. The combination achieved a greater protection than each of them alone. Melatonin, calpeptin or the combination all decreased Fluoro-Jade B (FJB)+ degenerative neurons and cleaved/total caspase-3 ratio at 24 hours. These treatments did not significantly impact the density of surviving neurons and ED-1+ macrophage/activated microglia. At the 72-hour-reperfusion, melatonin or the combination decreased the relative infarct volume and neurological deficit. Nevertheless, only the combination reduced FJB+ degenerating neurons at 72 hours. In conclusion, a combination of melatonin and calpeptin exerted synergistic protection against post-reperfusion injury in a rat MCAO stroke model.


Lipids ◽  
2021 ◽  
Author(s):  
Rahau S. Shirazi ◽  
Mikhail Vyssotski ◽  
Kirill Lagutin ◽  
Dion Thompson ◽  
Christa MacDonald ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 1475
Author(s):  
Irina V. Ostrova ◽  
Sergei N. Kalabushev ◽  
Ivan A. Ryzhkov ◽  
Zoya I. Tsokolaeva

The thromboembolic ischemia model is one of the most applicable for studying ischemic stroke in humans. The aim of this study was to develop a novel thromboembolic stroke model, allowing, by affordable tools, to reproduce cerebral infarction in rats. In the experimental group, the left common carotid artery, external carotid artery, and pterygopalatine branch of maxillary artery were ligated. A blood clot that was previously formed (during a 20 min period, in a catheter and syringe, by mixing with a thromboplastin solution and CaCl2) was injected into the left internal carotid artery. After 10 min, the catheter was removed, and the incision was sutured. The neurological status of the animals was evaluated using a 20-point scale. Histological examination of brain tissue was performed 6, 24, 72 h, and 6 days post-stroke. All groups showed motor and behavioral disturbances 24 h after surgery, which persisted throughout the study period. A histological examination revealed necrotic foci of varying severity in the cortex and subcortical regions of the ipsilateral hemisphere, for all experimental groups. A decrease in the density of hippocampal pyramidal neurons was revealed. Compared with existing models, the proposed ischemic stroke model significantly reduces surgical time, does not require an expensive operating microscope, and consistently reproduces brain infarction in the area of the middle cerebral artery supply.


2021 ◽  
pp. 0271678X2110559
Author(s):  
Di Wu ◽  
Jian Chen ◽  
Xuxiang Zhang ◽  
Roxanne Ilagan ◽  
Yuchuan Ding ◽  
...  

Selective therapeutic cooling is a promising technique for reducing final infarct volume and improving outcomes in ischemic stroke, especially as research regarding brain reperfusion continues to be explored. A recent study provided promising results on the safety and feasibility of selective therapeutic hypothermia via a closed-loop cooling catheter system for intra-carotid blood cooling in an ovine stroke model, but they failed to find efficacy of this method in this model. It is a major step forward from bench to bed side, but enhancing benefits of selective therapeutic cooling may need to take into account a more targeted induction of brain hypothermia and should mitigate potential side effects related to inducing hypothermia.


2021 ◽  
pp. 113884
Author(s):  
Stefanie D. Krämer ◽  
Michael K. Schuhmann ◽  
Fabian Schadt ◽  
Ina Israel ◽  
Samuel Samnick ◽  
...  

Author(s):  
Dilidaer Misilimu ◽  
Wei Li ◽  
Di Chen ◽  
Pengju Wei ◽  
Yichen Huang ◽  
...  

AbstractSalvinorin A (SA), a highly selective kappa opioid receptor agonist, has been shown to reduce brain infarct volume and improve neurological function after ischemic stroke. However, the underlying mechanisms have not been fully understood yet. Therefore, we explored whether SA provides neuroprotective effects by regulating the immune response after ischemic stroke both in the central nervous system (CNS) and peripheral circulation. In this study, adult male mice were subjected to transient Middle Cerebral Artery Occlusion (tMCAO) and then were treated intranasally with SA (50 μg/kg) or with the vehicle dimethyl sulfoxide (DMSO). Multiple behavioral tests were used to evaluate neurofunction. Flow cytometry and immunofluorescence staining were used to evaluate the infiltration of peripheral immune cells into the brain. The tracer cadaverine and endogenous immunoglobulin G (IgG) extravasation were used to detect blood brain barrier leakage. We observed that SA intranasal administration after ischemic stroke decreased the expression of pro-inflammatory factors in the brain. SA promoted the polarization of microglia/macrophages into a transitional phenotype and decreased the pro-inflammatory phenotype in the brain after tMCAO. Interestingly, SA treatment scarcely altered the number of peripheral immune cells but decreased the macrophage and neutrophil infiltration into the brain at 24 h after tMCAO. Furthermore, SA treatment also preserved BBB integrity, reduced long-term brain atrophy and white matter injury, as well as improved the long-term neurofunctional outcome in mice. In this study, intranasal administration of SA improved long-term neurological function via immuno-modulation and by preserving blood–brain barrier integrity in a mouse ischemic stroke model, suggesting that SA could potentially serve as an alternative treatment strategy for ischemic stroke. Graphic Abstract


2021 ◽  
Author(s):  
Eric S. Ho ◽  
Zhaoyi Ding

Background and purposes: Stroke is the second leading cause of death globally after ischemic heart disease, also a risk factor of cardioembolic stroke. Thus, we postulate that heartbeats encapsulate vital signals related to stroke. With the rapid advancement of deep neural networks (DNNs), it emerges as a powerful tool to decipher intriguing heartbeat patterns associated with post-stroke patients. In this study, we propose the use of a one-dimensional convolutional network (1D-CNN) architecture to build a binary classifier that distinguishes electrocardiogram s (ECGs) between the post-stroke and the stroke-free. Methods: We have built two 1D-CNNs that were used to identify distinct patterns from an openly accessible ECG dataset collected from elderly post-stroke patients. In addition to prediction accuracy, which is the primary focus of existing ECG deep neural network methods, we have utilized Gradient-weighted Class Activation Mapping (GRAD-CAM) to ease model interpretation by uncovering ECG patterns captured by our model. Results: Our stroke model has achieved ~90% accuracy and 0.95 area under the Receiver Operating Characteristic curve. Findings suggest that the core PQRST complex alone is important but not sufficient to differentiate the post-stroke and the stroke-free. Conclusions: We have developed an accurate stroke model using the latest DNN method. Importantly, our work has illustrated an approach to enhance model interpretation, overcoming the black-box issue facing DNN, fostering higher user confidence and adoption of DNN in medicine.


Sign in / Sign up

Export Citation Format

Share Document