Mast Cells
Recently Published Documents





2021 ◽  
Vol 11 ◽  
Felix Humphries ◽  
Bridget Chang-McDonald ◽  
Josie Patel ◽  
Nicholas Bockett ◽  
Erin Paterson ◽  

AimWe have previously demonstrated the presence of two cancer stem cell (CSC) subpopulations within metastatic head and neck cutaneous squamous cell carcinoma (mHNcSCC) expressing components of the renin-angiotensin system (RAS), which promotes tumorigenesis. Cathepsins B, D and G are enzymes that constitute bypass loops for the RAS. This study investigated the expression and localization of cathepsins B, D, and G in relation to CSC subpopulations within mHNcSCC.MethodsImmunohistochemical staining was performed on mHNcSCC tissue samples from 20 patients to determine the expression and localization of cathepsins B, D, and G. Immunofluorescence staining was performed on two of these mHNcSCC tissue samples by co-staining of cathepsins B and D with OCT4 and SOX2, and cathepsin G with mast cell markers tryptase and chymase. Western blotting and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were performed on five mHNcSCC samples and four mHNcSCC-derived primary cell lines, to determine protein and transcript expression of these three cathepsins, respectively. Enzyme activity assays were performed on mHNcSCC tissue samples to determine whether these cathepsins were active.ResultsImmunohistochemical staining demonstrated the presence of cathepsins B, D and G in in all 20 mHNcSCC tissue samples. Immunofluorescence staining showed that cathepsins B and D were localized to the CSCs both within the tumor nests and peri-tumoral stroma (PTS) and cathepsin G was localized to the phenotypic mast cells within the PTS. Western blotting demonstrated protein expression of cathepsin B and D, and RT-qPCR demonstrated transcript expression of all three cathepsins. Enzyme activity assays showed that cathepsin B and D to be active.ConclusionThe presence of cathepsins B and D on the CSCs and cathepsin G on the phenotypic mast cells suggest the presence of bypass loops for the RAS which may be a potential novel therapeutic target for mHNcSCC.

Amina Alobaidi ◽  
Abdulghani Alsamarai ◽  
Mohamed Almoustafa Alsamarai

: Asthma is a chronic disease with abnormal inflammatory and immunological responses. The disease initiated by antigens in subjects with genetic susceptibility. However, environmental factors play a role in the initiation and exacerbation of asthma attack. Asthma is T helper 2 (Th2)-cell-mediated disease. Recent studies indicated that asthma is not a single disease entity, but it is with multiple phenotypes and endotypes. The pathophysiological changes in asthma included a series of subsequent continuous vicious circle of cellular activation contributed to induction of chemokines and cytokines that potentiate inflammation. The heterogeneity of asthma influenced the treatment response. The asthma pathogenesis driven by varied set of cells such as eosinophils, basophils, neutrophils, mast cells, macrophages, epithelial cells and T cells. In this review the role of T cells, macrophage, and epithelial cells are discussed.

Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 934
Babak J. Mehrara ◽  
Hyeung Ju Park ◽  
Raghu P. Kataru ◽  
Jacqueline Bromberg ◽  
Michelle Coriddi ◽  

Recent studies suggest that Th2 cells play a key role in the pathology of secondary lymphedema by elaborating cytokines such as IL4 and IL13. The aim of this study was to test the efficacy of QBX258, a monoclonal IL4/IL13 neutralizing antibody, in women with breast cancer–related lymphedema (BCRL). We enrolled nine women with unilateral stage I/II BCRL and treated them once monthly with intravenous infusions of QBX258 for 4 months. We measured limb volumes, bioimpedance, and skin tonometry, and analyzed the quality of life (QOL) using a validated lymphedema questionnaire (Upper Limb Lymphedema 27, ULL-27) before treatment, immediately after treatment, and 4 months following treatment withdrawal. We also obtained 5 mm skin biopsies from the normal and lymphedematous limbs before and after treatment. Treatment was well-tolerated; however, one patient with a history of cellulitis developed cellulitis during the trial and was excluded from further analysis. We found no differences in limb volumes or bioimpedance measurements after drug treatment. However, QBX258 treatment improved skin stiffness (p < 0.001) and improved QOL measurements (Physical p < 0.05, Social p = 0.01). These improvements returned to baseline after treatment withdrawal. Histologically, treatment decreased epidermal thickness, the number of proliferating keratinocytes, type III collagen deposition, infiltration of mast cells, and the expression of Th2-inducing cytokines in the lymphedematous skin. Our limited study suggests that immunotherapy against Th2 cytokines may improve skin changes and QOL of women with BCRL. This treatment appears to be less effective for decreasing limb volumes; however, additional studies are needed.

2021 ◽  
Natalia Duque-Wilckens ◽  
Erika Sarno ◽  
Robert Teis ◽  
Frauke Stoelting ◽  
Sonia Khalid ◽  

Exposure to early life adversity (ELA) in the form of physical and/or psychological abuse or neglect increases the risk of developing psychiatric and inflammatory disorders later in life. It has been hypothesized that exposure to ELA results in persistent, low grade inflammation that leads to increased disease susceptibility by amplifying the crosstalk between stress processing brain networks and the immune system, but the mechanisms remain largely unexplored. The meninges, a layer of three overlapping membranes that surround the central nervous system (CNS) (duramater, arachnoid, and piamater), possess unique features that allow them to play a key role in coordinating immune trafficking between the brain and the peripheral immune system. These include a network of lymphatic vessels that carry cerebrospinal fluid from the brain to the deep cervical lymph nodes, fenestrated blood vessels that allow the passage of molecules from blood to the CNS, and a rich population of resident mast cells, master regulators of the immune system. Using a mouse model of ELA consisting of neonatal maternal separation plus early weaning (NMSEW), we sought to explore the effects of ELA on duramater mast cell histology and expression of inflammatory markers in male and female C57Bl/6 mice. We found that mast cell number, activation level, and relative expression of pseudopodia differ across duramater regions, and that NMSEW exerts region-specific effects on mast cells in males and females. Using gene expression analyses, we next found that NMSEW increases the expression of inflammatory markers in the duramater of females but not males, and that this is prevented by pharmacological inhibition of mast cells with ketotifen. Together, our results show that ELA drives sex specific, long lasting effects on the duramater mast cell population and immune related gene expression, suggesting that the long-lasting effects of ELA on disease susceptibility could be partly mediated by meningeal function.

2021 ◽  
Vol 2 ◽  
Bárbara Roque Ferreira ◽  
José Luís Pio-Abreu ◽  
Américo Figueiredo ◽  
Laurent Misery

Pruritus is a key symptom in allergology and dermatology, contributing to the global and huge impact on quality of life related to skin disorders, both those which are not related to a primary dermatosis (illness) and those which are linked with primary skin lesions (disease). This is particularly evident within psychophysiological dermatoses, a group of psychodermatological diseases where there is a primary dermatosis, where psychological stress plays a role, and where pruritus may represent a major and shared symptom. The etiopathogenesis of pruritus in those disorders sheds light on the link among psychopathological features, psychological stress and the subtle interface between allergic and autoimmune mechanisms, where mast cells play a pivotal role. Allergy has long been recognised as an altered reactivity to exogenous antigens (allergens), defined as an immediate hypersensitivity mediated by immunoglobulin E (IgE). In turn, the immunological understanding of atopy is related to an immediate hypersensitivity reaction to environmental antigens involving T-helper 2 (Th2) responses and the IgE production. Mast cells are major cells in the early phase of allergy, releasing the mediators involved in the symptoms associated with the allergic disease, including pruritus, when the allergen cross-links with IgE, whose mechanisms can be observed in acute urticaria and atopy. Some allergic reactions may persist and allergy may eventually lead to autoimmunity, with the development of a T-helper 1 (Th1) and then IgE-independent inflammation. For instance, in chronic spontaneous urticaria, the mast cell activation may include autoimmune mechanisms, where autoantibodies against the extracellular α subunit of the high-affinity IgE receptor (FcεRIα) and to IgE are observed, with the involvement of Th1 lymphocytes and the production of interferon-γ (INF-γ). The role of autoimmunity is also suggested in the etiopathogenesis of other psychophysiological dermatoses, namely psoriasis, atopic dermatitis and alopecia areata. In the latter, for example, mast cells were reported to be linked with the loss of immune privilege and they are the key cells involved in the experience of pruritus, whose intensity was reported to precede and be correlated with the onset of the hair loss. Furthermore, considering that the role of hair and skin is wide, from psychosocial aspects (communication and social interaction) to vital functions (such as, temperature control), it is straightforward that they are central in our interactions and synchronization with others and the world; thereby, we may admit that the psychophysiological dermatoses could represent a loss of such synchronization. Furthermore, they are often linked with psychopathology which strongly connects with the concept of desynchronization, namely, sleep disorders and depressive symptoms, the clinical expression of a dysfunction in the interplay among mast cells, pineal gland and melatonin, thus the circadian rhythm, as well as their connection with the hypothalamic corticotrophin-releasing hormone (CRH), well-known for its key role in stress response. Moreover, increasing evidence has supported the existence of cutaneous equivalents for these mechanisms, connecting with those central pathways. Thereby, taking all these concepts into consideration, this review intends to look into the updated evidence on the shared biological mechanisms between allergy and autoimmunity, underlining pruritus as a core element, then revisiting the key role of mast cells and discussing the connection with melatonin and immune-inflammatory pathways in the physiopathology of psychophysiological dermatoses, thus paving the way for the understanding of their psychosomatic correlates and a comprehensive psychodermatological approach.

2021 ◽  
Vol 3 (1) ◽  
pp. 1-5
Raisa Ferreira Costa ◽  
Emanuela Paz Rosas ◽  
Daniela Araújo de Oliveira ◽  
Marcelo Moraes Valença

Capsaicin is able to induce mast cell degranulation, an event probably related to the pathophysiologyof a migraine attack. The present review study aimed to address the mechanisms of action of capsaicin and other chemical inducers in mast cell degranulation and an interaction of nerves and events that happen in the dura mater with the activation of mast cells. A survey was carried out in the literature, from 1980 to 2019, in different databases, using the following terms: capsaicin, mast cell and dura mater. 36 articles were selected for this review. Studies indicate that the main mechanisms of action of capsaicin are chemical induction through the activation of TRPV1 channels,allowing calcium influx into neurons in the trigeminal ganglion of the dura mater, activating mast cell degranulation, releasing pro-inflammatory (e.g., histamine, oxide nitric) and vasoactive (e.g., CGRP and substance P) substances. Therefore, the use of capsaicin may be a tool to be used in an animal model to better understand the pathophysiology of migraine. 

2021 ◽  
pp. 109352662110410
Margaret H. Collins ◽  
Eileen S. Alexander ◽  
Lisa J. Martin ◽  
Tommie M. Grotjan ◽  
Vincent A. Mukkada ◽  

Background Esophageal strictures (ES) in children are not well characterized pathologically. We report unique histopathologic analyses of resected acquired ES and control esophagi (CE). Methods Muscle layer thicknesses were measured in intact well-oriented areas; inflammatory cells were counted in the most inflamed high power field (hpf). Sections were stained with relevant antibodies. Results were expressed as median, lower and upper quartiles. Wilcoxon Rank Sums non-parametric test was used to compare groups; P ≤ 0.05 was considered significant. Results All ES (N = 10) showed focal replacement of lamina propria, muscularis mucosa and submucosa by actin+ fibers emanating from muscularis propria. Compared to CE (N = 8), ES displayed significantly thickened muscularis mucosa and propria, and increased mast cells (tryptase- and chymase-positive), and eosinophils in muscle layers (all P ≤ 0.01). Matrix proteins periostin and fibronectin were identified in the muscle layers of CE, and in the extracellular matrix in areas of disrupted architecture in ES. Conclusions Compared to CE, acquired ES in children show significant structural alterations, including obliterative muscularization, inflammatory cell mural infiltrates, and extracellular matrix protein deposits. Therapies targeting connective tissue expansion, mast cells, eosinophils and inflammation may be beneficial to treat ES.

2021 ◽  
Vol 12 ◽  
Yoojung Kwon ◽  
Yunji Choi ◽  
Misun Kim ◽  
Myeong Seon Jeong ◽  
Hyun Suk Jung ◽  

Histone deacetylase 6 (HDAC6) has been known to regulate inflammatory diseases. The role of HDAC6 in allergic skin inflammation has not been studied. We studied the role of HDAC6 in atopic dermatitis (AD) and the mechanisms associated with it. The decreased expression or chemical inhibition of HDAC6 suppressed AD by decreasing autophagic flux and cellular features of AD. AD increased expression levels of the Th1 and Th2 cytokines, but decreased expression levels of forkhead box P3 (FoxP3) and interleukin-10 (IL-10) in an HDAC6-dependent manner. CXC chemokine ligand 13 (CXCL13), which was increased in an HDAC6-depenednt manner, mediated AD. MiR-9, negatively regulated by HDAC6, suppressed AD by directly regulating the expression of sirtuin 1 (SIRT1). The downregulation or inhibition of SIRT1 suppressed AD. Experiments employing culture medium and transwell suggested that cellular interactions involving mast cells, keratinocytes, and dermal fibroblast cells could promote AD; HDAC6 and CXCL13 were found to be necessary for these cellular interactions. Mouse recombinant CXCL13 protein increased HDAC6 expression in skin mast cells and dermal fibroblast cells. CXCL13 protein was found to be present in the exosomes of DNCB-treated skin mast cells. Exosomes of DNCB-treated skin mast cells enhanced invasion potentials of keratinocytes and dermal fibroblast cells and increased expression levels of HDAC6, SIRT1 and CXCL13 in keratinocytes and dermal fibroblast cells. These results indicate that HDAC6 and CXCL13 may serve as targets for the developing anti-atopic drugs.

Mingzhu Luan ◽  
Huiyun Wang ◽  
Jiazhen Wang ◽  
Xiaofan Zhang ◽  
Fenglan Zhao ◽  

: In vivo and in vitro studies reveal that ursolic acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli, and has favorable anti-inflammatory effects. The anti-inflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of signal pathway, down-regulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.

2021 ◽  
Vol 12 ◽  
Alejandro M. Palma ◽  
Mark R. Hanes ◽  
Jean S. Marshall

Mast cells are well known to be activated via cross-linking of immunoglobulins bound to surface receptors. They are also recognized as key initiators and regulators of both innate and adaptive immune responses against pathogens, especially in the skin and mucosal surfaces. Substantial attention has been given to the role of mast cells in regulating T cell function either directly or indirectly through actions on dendritic cells. In contrast, the ability of mast cells to modify B cell responses has been less explored. Several lines of evidence suggest that mast cells can greatly modify B cell generation and activities. Mast cells co-localise with B cells in many tissue settings and produce substantial amounts of cytokines, such as IL-6, with profound impacts on B cell development, class-switch recombination events, and subsequent antibody production. Mast cells have also been suggested to modulate the development and functions of regulatory B cells. In this review, we discuss the critical impacts of mast cells on B cells using information from both clinical and laboratory studies and consider the implications of these findings on the host response to infections.

Sign in / Sign up

Export Citation Format

Share Document