Deterministic Coreference Resolution Based on Entity-Centric, Precision-Ranked Rules

2013 ◽  
Vol 39 (4) ◽  
pp. 885-916 ◽  
Author(s):  
Heeyoung Lee ◽  
Angel Chang ◽  
Yves Peirsman ◽  
Nathanael Chambers ◽  
Mihai Surdeanu ◽  
...  

We propose a new deterministic approach to coreference resolution that combines the global information and precise features of modern machine-learning models with the transparency and modularity of deterministic, rule-based systems. Our sieve architecture applies a battery of deterministic coreference models one at a time from highest to lowest precision, where each model builds on the previous model's cluster output. The two stages of our sieve-based architecture, a mention detection stage that heavily favors recall, followed by coreference sieves that are precision-oriented, offer a powerful way to achieve both high precision and high recall. Further, our approach makes use of global information through an entity-centric model that encourages the sharing of features across all mentions that point to the same real-world entity. Despite its simplicity, our approach gives state-of-the-art performance on several corpora and genres, and has also been incorporated into hybrid state-of-the-art coreference systems for Chinese and Arabic. Our system thus offers a new paradigm for combining knowledge in rule-based systems that has implications throughout computational linguistics.

2015 ◽  
Vol 52 ◽  
pp. 445-475 ◽  
Author(s):  
Marie-Catherine De Marneffe ◽  
Marta Recasens ◽  
Christopher Potts

A discourse typically involves numerous entities, but few are mentioned more than once. Distinguishing those that die out after just one mention (singleton) from those that lead longer lives (coreferent) would dramatically simplify the hypothesis space for coreference resolution models, leading to increased performance. To realize these gains, we build a classifier for predicting the singleton/coreferent distinction. The model’s feature representations synthesize linguistic insights about the factors affecting discourse entity lifespans (especially negation, modality, and attitude predication) with existing results about the benefits of “surface” (part-of-speech and n-gram-based) features for coreference resolution. The model is effective in its own right, and the feature representations help to identify the anchor phrases in bridging anaphora as well. Furthermore, incorporating the model into two very different state-of-the-art coreference resolution systems, one rule-based and the other learning-based, yields significant performance improvements.


Author(s):  
Praveen Kumar Dwivedi ◽  
Surya Prakash Tripathi

Background: Fuzzy systems are employed in several fields like data processing, regression, pattern recognition, classification and management as a result of their characteristic of handling uncertainty and explaining the feature of the advanced system while not involving a particular mathematical model. Fuzzy rule-based systems (FRBS) or fuzzy rule-based classifiers (mainly designed for classification purpose) are primarily the fuzzy systems that consist of a group of fuzzy logical rules and these FRBS are unit annexes of ancient rule-based systems, containing the "If-then" rules. During the design of any fuzzy systems, there are two main objectives, interpretability and accuracy, which are conflicting with each another, i.e., improvement in any of those two options causes the decrement in another. This condition is termed as Interpretability –Accuracy Trade-off. To handle this condition, Multi-Objective Evolutionary Algorithms (MOEA) are often applied within the design of fuzzy systems. This paper reviews the approaches to the problem of developing fuzzy systems victimization evolutionary process Multi-Objective Optimization (EMO) algorithms considering ‘Interpretability-Accuracy Trade-off, current research trends and improvement in the design of fuzzy classifier using MOEA in the future scope of authors. Methods: The state-of-the-art review has been conducted for various fuzzy classifier designs, and their optimization is reviewed in terms of multi-objective. Results: This article reviews the different Multi-Objective Optimization (EMO) algorithms in the context of Interpretability -Accuracy tradeoff during fuzzy classification. Conclusion: The evolutionary multi-objective algorithms are being deployed in the development of fuzzy systems. Improvement in the design using these algorithms include issues like higher spatiality, exponentially inhabited solution, I-A tradeoff, interpretability quantification, and describing the ability of the system of the fuzzy domain, etc. The focus of the authors in future is to find out the best evolutionary algorithm of multi-objective nature with efficiency and robustness, which will be applicable for developing the optimized fuzzy system with more accuracy and higher interpretability. More concentration will be on the creation of new metrics or parameters for the measurement of interpretability of fuzzy systems and new processes or methods of EMO for handling I-A tradeoff.


Sign in / Sign up

Export Citation Format

Share Document