scholarly journals The Role of the Left Head of Caudate in Suppressing Irrelevant Words

2010 ◽  
Vol 22 (10) ◽  
pp. 2369-2386 ◽  
Author(s):  
Nilufa Ali ◽  
David W. Green ◽  
Ferath Kherif ◽  
Joseph T. Devlin ◽  
Cathy J. Price

Suppressing irrelevant words is essential to successful speech production and is expected to involve general control mechanisms that reduce interference from task-unrelated processing. To investigate the neural mechanisms that suppress visual word interference, we used fMRI and a Stroop task, using a block design with an event-related analysis. Participants indicated with a finger press whether a visual stimulus was colored pink or blue. The stimulus was either the written word “BLUE,” the written word “PINK,” or a string of four Xs, with word interference introduced when the meaning of the word and its color were “incongruent” (e.g., BLUE in pink hue) relative to congruent (e.g., BLUE in blue) or neutral (e.g., XXXX in pink). The participants also made color decisions in the presence of spatial interference rather than word interference (i.e., the Simon task). By blocking incongruent, congruent, and neutral trials, we identified activation related to the mechanisms that suppress interference as that which was greater at the end relative to the start of incongruency. This highlighted the role of the left head of caudate in the control of word interference but not spatial interference. The response in the left head of caudate contrasted to bilateral inferior frontal activation that was greater at the start than at the end of incongruency, and to the dorsal anterior cingulate gyrus which responded to a change in the motor response. Our study therefore provides novel insights into the role of the left head of caudate in the mechanisms that suppress word interference.

Epilepsia ◽  
2000 ◽  
Vol 41 (5) ◽  
pp. 594-600 ◽  
Author(s):  
Elmer C. San Pedro ◽  
James M. Mountz ◽  
Buddhiwardhan Ojha ◽  
Adil A. Khan ◽  
Hong-Gang Liu ◽  
...  

2018 ◽  
Author(s):  
Kohinoor M. Darda ◽  
Richard Ramsey

AbstractHumans copy other people without their conscious awareness, a behaviour known as automatic imitation. Although automatic imitation forms a key part of daily social interactions, we do not copy other people indiscriminately. Instead, we control imitative tendencies by prioritising some actions and inhibiting others. To date, neuroimaging studies investigating the control of automatic imitation have produced inconsistent findings. Some studies suggest that imitation control relies on a domain-specific neural circuit related to social cognition (the theory-of-mind network). In contrast, other studies show engagement of a domain-general neural circuit that is engaged during a diverse range of cognitive control tasks (the multiple demand network). Given the inconsistency of prior findings, in the current paper we avoided problems associated with interpreting individual studies by performing a meta-analysis. To do so, we used a multi-level kernel density analysis to quantitatively identify consistent patterns of activation across functional magnetic resonance imaging studies investigating the control of imitation. Our results show clear and consistent evidence across studies that the control of automatic imitation is guided by brain regions in the multiple demand network including dorsolateral frontoparietal cortex. In contrast, there was only limited evidence that regions in the theory of mind network were engaged. Indeed, medial prefrontal cortex showed no consistent engagement and right temporoparietal junction engagement may reflect spatial rather than imitative control. As such, the current meta-analysis reinforces the role of domain-general control mechanisms and provides limited evidence in support of the role of domain-specific processes in regulating imitative tendencies. Consequently, neurocognitive models of imitation need updating to place more emphasis on domain-general control mechanisms, as well as to consider more complex organisational structures of control, which may involve contributions from multiple cognitive systems.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sebastian P. H. Speer ◽  
Ale Smidts ◽  
Maarten A. S. Boksem

There is a long-standing debate regarding the cognitive nature of (dis)honesty: Is honesty an automatic response or does it require willpower in the form of cognitive control in order to override an automatic dishonest response. In a recent study (Speer et al., 2020), we proposed a reconciliation of these opposing views by showing that activity in areas associated with cognitive control, particularly the inferior frontal gyrus (IFG), helped dishonest participants to be honest, whereas it enabled cheating for honest participants. These findings suggest that cognitive control is not needed to be honest or dishonest per se but that it depends on an individual’s moral default. However, while our findings provided insights into the role of cognitive control in overriding a moral default, they did not reveal whether overriding honest default behavior (non-habitual dishonesty) is the same as overriding dishonest default behavior (non-habitual honesty) at the neural level. This speaks to the question as to whether cognitive control mechanisms are domain-general or may be context specific. To address this, we applied multivariate pattern analysis to compare neural patterns of non-habitual honesty to non-habitual dishonesty. We found that these choices are differently encoded in the IFG, suggesting that engaging cognitive control to follow the norm (that cheating is wrong) fundamentally differs from applying control to violate this norm.


2005 ◽  
Vol 138 (2) ◽  
pp. 171-181 ◽  
Author(s):  
Friedel M. Reischies ◽  
Andres H. Neuhaus ◽  
Marie L. Hansen ◽  
Susanne Mientus ◽  
Christoph Mulert ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-3 ◽  
Author(s):  
Ivânia Alves ◽  
Vítor Tedim Cruz ◽  
Hans Peter Grebe

Background and Purpose. Spasticity is a positive sign of upper motor neuron syndrome that usually develops weeks after a stroke. The mechanisms that lead to its appearance are not completely understood, namely, the cortical regions whose lesion may induce spasticity.Summary of Cases. We report two patients with an ischaemic stroke entailing the anterior cingulate gyrus (pericallosal artery territory), who presented with acute hemiplegia and spasticity since symptom onset. Spasticity resolved within days after onset.Conclusions. The acute destruction of the anterior cingulate region, interrupting inhibitory projections towards lower motor centres, probably explains the acute onset of spasticity that occurred in these two patients. Further studies addressing the role of this region in acute and chronic disturbances of muscular tone are necessary.


2021 ◽  
Vol 118 (43) ◽  
pp. e2109208118
Author(s):  
Liyang Sai ◽  
Gabriele Bellucci ◽  
Chongxiang Wang ◽  
Genyue Fu ◽  
Julia A. Camilleri ◽  
...  

Numerous studies have sought proof of whether people are genuinely honest by testing whether cognitive control mechanisms are recruited during honest and dishonest behaviors. The underlying assumption is: Deliberate behaviors require cognitive control to inhibit intuitive responses. However, cognitive control during honest and dishonest behaviors can be required for other reasons than deliberation. Across 58 neuroimaging studies (1,211 subjects), we investigated different forms of honest and dishonest behaviors and demonstrated that many brain regions previously implicated in dishonesty may reflect more general cognitive mechanisms. We argue that the motivational/volitional dimension is central to deliberation and provide evidence that motivated dishonest behaviors recruit the perigenual anterior cingulate cortex. This work questions the view that cognitive control is a hallmark of dishonesty.


2012 ◽  
Vol 187 (4S) ◽  
Author(s):  
Takeya Kitta ◽  
Hiroshi Tanaka ◽  
Takahiko Mitsui ◽  
Yukiko Kannno ◽  
Kimihiko Moriya ◽  
...  

Author(s):  
Luisa Lugli ◽  
Stefania D’Ascenzo ◽  
Roberto Nicoletti ◽  
Carlo Umiltà

Abstract. The Simon effect lies on the automatic generation of a stimulus spatial code, which, however, is not relevant for performing the task. Results typically show faster performance when stimulus and response locations correspond, rather than when they do not. Considering reaction time distributions, two types of Simon effect have been individuated, which are thought to depend on different mechanisms: visuomotor activation versus cognitive translation of spatial codes. The present study aimed to investigate whether the presence of a distractor, which affects the allocation of attentional resources and, thus, the time needed to generate the spatial code, changes the nature of the Simon effect. In four experiments, we manipulated the presence and the characteristics of the distractor. Findings extend previous evidence regarding the distinction between visuomotor activation and cognitive translation of spatial stimulus codes in a Simon task. They are discussed with reference to the attentional model of the Simon effect.


Sign in / Sign up

Export Citation Format

Share Document