scholarly journals The Limits of Feedforward Vision: Recurrent Processing Promotes Robust Object Recognition when Objects Are Degraded

2012 ◽  
Vol 24 (11) ◽  
pp. 2248-2261 ◽  
Author(s):  
Dean Wyatte ◽  
Tim Curran ◽  
Randall O'Reilly

Everyday vision requires robustness to a myriad of environmental factors that degrade stimuli. Foreground clutter can occlude objects of interest, and complex lighting and shadows can decrease the contrast of items. How does the brain recognize visual objects despite these low-quality inputs? On the basis of predictions from a model of object recognition that contains excitatory feedback, we hypothesized that recurrent processing would promote robust recognition when objects were degraded by strengthening bottom–up signals that were weakened because of occlusion and contrast reduction. To test this hypothesis, we used backward masking to interrupt the processing of partially occluded and contrast reduced images during a categorization experiment. As predicted by the model, we found significant interactions between the mask and occlusion and the mask and contrast, such that the recognition of heavily degraded stimuli was differentially impaired by masking. The model provided a close fit of these results in an isomorphic version of the experiment with identical stimuli. The model also provided an intuitive explanation of the interactions between the mask and degradations, indicating that masking interfered specifically with the extensive recurrent processing necessary to amplify and resolve highly degraded inputs, whereas less degraded inputs did not require much amplification and could be rapidly resolved, making them less susceptible to masking. Together, the results of the experiment and the accompanying model simulations illustrate the limits of feedforward vision and suggest that object recognition is better characterized as a highly interactive, dynamic process that depends on the coordination of multiple brain areas.

2021 ◽  
Vol 15 ◽  
Author(s):  
Natalia P. Kurzina ◽  
Anna B. Volnova ◽  
Irina Y. Aristova ◽  
Raul R. Gainetdinov

Attention deficit hyperactivity disorder (ADHD) is believed to be connected with a high level of hyperactivity caused by alterations of the control of dopaminergic transmission in the brain. The strain of hyperdopaminergic dopamine transporter knockout (DAT-KO) rats represents an optimal model for investigating ADHD-related pathological mechanisms. The goal of this work was to study the influence of the overactivated dopamine system in the brain on a motor cognitive task fulfillment. The DAT-KO rats were trained to learn an object recognition task and store it in long-term memory. We found that DAT-KO rats can learn to move an object and retrieve food from the rewarded familiar objects and not to move the non-rewarded novel objects. However, we observed that the time of task performance and the distances traveled were significantly increased in DAT-KO rats in comparison with wild-type controls. Both groups of rats explored the novel objects longer than the familiar cubes. However, unlike controls, DAT-KO rats explored novel objects significantly longer and with fewer errors, since they preferred not to move the non-rewarded novel objects. After a 3 months’ interval that followed the training period, they were able to retain the learned skills in memory and to efficiently retrieve them. The data obtained indicate that DAT-KO rats have a deficiency in learning the cognitive task, but their hyperactivity does not prevent the ability to learn a non-spatial cognitive task under the presentation of novel stimuli. The longer exploration of novel objects during training may ensure persistent learning of the task paradigm. These findings may serve as a base for developing new ADHD learning paradigms.


Author(s):  
Kohitij Kar ◽  
James J DiCarlo

SummaryDistributed neural population spiking patterns in macaque inferior temporal (IT) cortex that support core visual object recognition require additional time to develop for specific (“late-solved”) images suggesting the necessity of recurrent processing in these computations. Which brain circuit motifs are most responsible for computing and transmitting these putative recurrent signals to IT? To test whether the ventral prefrontal cortex (vPFC) is a critical recurrent circuit node in this system, here we pharmacologically inactivated parts of the vPFC and simultaneously measured IT population activity, while monkeys performed object discrimination tasks. Our results show that vPFC inactivation deteriorated the quality of the late-phase (>150 ms from image onset) IT population code, along with commensurate, specific behavioral deficits for “late-solved” images. Finally, silencing vPFC caused the monkeys’ IT activity patterns and behavior to become more like those produced by feedforward artificial neural network models of the ventral stream. Together with prior work, these results argue that fast recurrent processing through the vPFC is critical to the production of behaviorally-sufficient object representations in IT.


2017 ◽  
Author(s):  
Le Chang ◽  
Pinglei Bao ◽  
Doris Y. Tsao

AbstractAn important question about color vision is: how does the brain represent the color of an object? The recent discovery of “color patches” in macaque inferotemporal (IT) cortex, the part of brain responsible for object recognition, makes this problem experimentally tractable. Here we record neurons in three color patches, middle color patch CLC (central lateral color patch), and two anterior color patches ALC (anterior lateral color patch) and AMC (anterior medial color patch), while presenting images of objects systematically varied in hue. We found that all three patches contain high concentrations of hue-selective cells, and the three patches use distinct computational strategies to represent colored objects: while all three patches multiplex hue and shape information, shape-invariant hue information is much stronger in anterior color patches ALC/AMC than CLC; furthermore, hue and object shape specifically for primate faces/bodies are over-represented in AMC but not in the other two patches.


1995 ◽  
Vol 6 (3) ◽  
pp. 182-186 ◽  
Author(s):  
Steven Yantis

The human visual system does not rigidly preserve the properties of the retinal image as neural signals are transmitted to higher areas of the brain Instead, it generates a representation that captures stable surface properties despite a retinal image that is often fragmented in space and time because of occlusion caused by object and observer motion The recovery of this coherent representation depends at least in part on input from an abstract representation of three-dimensional (3-D) surface layout In the two experiments reported, a stereoscopic apparent motion display was used to investigate the perceived continuity of a briefly interrupted visual object When a surface appeared in front of the object's location during the interruption, the object was more likely to be perceived as persisting through the interruption (behind an occluder) than when the surface appeared behind the object's location under otherwise identical stimulus conditions The results reveal the influence of 3-D surface-based representations even in very simple visual tasks


2019 ◽  
Author(s):  
Amanda K. Robinson ◽  
Tijl Grootswagers ◽  
Thomas A. Carlson

AbstractRapid image presentations combined with time-resolved multivariate analysis methods of EEG or MEG (rapid-MVPA) offer unique potential in assessing the temporal limitations of the human visual system. Recent work has shown that multiple visual objects presented sequentially can be simultaneously decoded from M/EEG recordings. Interestingly, object representations reached higher stages of processing for slower image presentation rates compared to fast rates. This fast rate attenuation is probably caused by forward and backward masking from the other images in the stream. Two factors that are likely to influence masking during rapid streams are stimulus duration and stimulus onset asynchrony (SOA). Here, we disentangle these effects by studying the emerging neural representation of visual objects using rapid-MVPA while independently manipulating stimulus duration and SOA. Our results show that longer SOAs enhance the decodability of neural representations, regardless of stimulus presentation duration, suggesting that subsequent images act as effective backward masks. In contrast, image duration does not appear to have a graded influence on object representations. Interestingly, however, decodability was improved when there was a gap between subsequent images, indicating that an abrupt onset or offset of an image enhances its representation. Our study yields insight into the dynamics of object processing in rapid streams, paving the way for future work using this promising approach.


2021 ◽  
Vol 118 (27) ◽  
pp. e2103040118
Author(s):  
Yusuke Nakashima ◽  
So Kanazawa ◽  
Masami K. Yamaguchi

Recurrent loops in the visual cortex play a critical role in visual perception, which is likely not mediated by purely feed-forward pathways. However, the development of recurrent loops is poorly understood. The role of recurrent processing has been studied using visual backward masking, a perceptual phenomenon in which a visual stimulus is rendered invisible by a following mask, possibly because of the disruption of recurrent processing. Anatomical studies have reported that recurrent pathways are immature in early infancy. This raises the possibility that younger infants process visual information mainly in a feed-forward manner, and thus, they might be able to perceive visual stimuli that adults cannot see because of backward masking. Here, we show that infants under 7 mo of age are immune to visual backward masking and that masked stimuli remain visible to younger infants while older infants cannot perceive them. These results suggest that recurrent processing is immature in infants under 7 mo and that they are able to perceive objects even without recurrent processing. Our findings indicate that the algorithm for visual perception drastically changes in the second half of the first year of life.


2018 ◽  
Vol 18 (10) ◽  
pp. 906
Author(s):  
Karim Rajaei ◽  
Yalda Mohsenzadeh ◽  
Reza Ebrahimpour ◽  
Seyed Mahdi Khaligh Razavi

2021 ◽  
Vol 21 (13) ◽  
pp. 6
Author(s):  
Markus R. Ernst ◽  
Thomas Burwick ◽  
Jochen Triesch

Sign in / Sign up

Export Citation Format

Share Document