scholarly journals Neural Correlates of Enhanced Visual Attentional Control in Action Video Game Players: An Event-Related Potential Study

2019 ◽  
Vol 31 (3) ◽  
pp. 377-389 ◽  
Author(s):  
Julia Föcker ◽  
Matin Mortazavi ◽  
Wayne Khoe ◽  
Steven A. Hillyard ◽  
Daphne Bavelier

Action video game players (AVGPs) outperform non–action video game players (NAVGPs) on a range of perceptual and attentional tasks. Although several studies have reported neuroplastic changes within the frontoparietal networks of attention in AVGPs, little is known about possible changes in attentional modulation in low-level visual areas. To assess the contribution of these different levels of neural processing to the perceptual and attentional enhancements noted in AVGPs, visual event-related potentials (ERPs) were recorded from 14 AVGPs and 14 NAVGPs during a target discrimination task that required participants to attend to rapid sequences of Gabor patches under either focused or divided attention conditions. AVGPs responded faster to target Gabors in the focused attention condition compared with the NAVGPs. Correspondingly, ERPs to standard Gabors revealed a more pronounced negativity in the time range of the parietally generated anterior N1 component in AVGPs compared with NAVGPs during focused attention. In addition, the P2 component of the visual ERP was more pronounced in AVGPs than in NAVGPs over the hemisphere contralateral to the stimulus position in response to standard Gabors. Contrary to predictions, however, attention-modulated occipital components generated in the low-level extrastriate visual pathways, including the P1 and posterior N1, showed no significant group differences. Thus, the main neural signature of enhanced perceptual and attentional control functions in AVGPs appears linked to an attention-dependent parietal process, indexed by the anterior N1 component, and possibly to more efficient higher-order perceptual processing, indexed by the P2 component.

2018 ◽  
Vol 8 (7) ◽  
pp. e01019 ◽  
Author(s):  
Julia Föcker ◽  
Daniel Cole ◽  
Anton L. Beer ◽  
Daphne Bavelier

2012 ◽  
Vol 12 (9) ◽  
pp. 680-680 ◽  
Author(s):  
K. C. Dieter ◽  
A. Levi ◽  
D. Bavelier ◽  
D. Tadin

2012 ◽  
Vol 139 (2) ◽  
pp. 327-334 ◽  
Author(s):  
Hande Sungur ◽  
Aysecan Boduroglu

2016 ◽  
pp. 107-116 ◽  
Author(s):  
C. Shawn Green ◽  
Thomas Gorman ◽  
Daphne Bavelier

2018 ◽  
Vol 49 (4) ◽  
pp. 238-247 ◽  
Author(s):  
Derek J. Fisher ◽  
Debra J. Campbell ◽  
Shelagh C. Abriel ◽  
Emma M. L. Ells ◽  
Erica D. Rudolph ◽  
...  

The mismatch negativity (MMN) is an EEG-derived event-related potential (ERP) elicited by any violation of a predicted auditory “rule,” regardless of whether one is attending to the stimuli and is thought to reflect updating of the stimulus context. Redirection of attention toward a rare, distracting stimulus event, however, can be measured by the subsequent P3a component of the P300. Chronic schizophrenia patients exhibit robust MMN deficits, as well as reductions in P3a amplitude. While, the substantial literature on the MMN in first-episode and early phase schizophrenia in this population reports reduced amplitudes, there also exist several contradictory studies. Conversely, P3a reduction in this population is relatively consistent, although the literature investigating this is small. The primary goal of this study was to contribute to our understanding of whether auditory change detection mechanisms are altered in early phase schizophrenia and, if so, under what conditions. Event-related potentials elicited by duration, frequency, gap, intensity, and location deviants (as elicited by the “optimal” multi-feature paradigm) were recorded in 14 early phase schizophrenia (EP) patients and 17 healthy controls (HCs). Electrical activity was recorded from 15 scalp electrodes. MMN/P3a amplitudes and latencies for each deviant were compared between groups and were correlated with clinical measures in EPs. There were no significant group differences for MMN amplitudes or latencies, though EPs did exhibit reduced P3a amplitudes to gap and duration deviants. Furthermore, PANSS (Positive and Negative Syndrome Scale) positive symptom scores were correlated with intensity MMN latencies and duration P3a amplitudes in EPs. These findings suggest that MMNs may not be as robustly reduced in early phase schizophrenia (relative to chronic illness), but that alterations may be more likely in patients with increased positive symptomatology. Furthermore, these findings offer further support to previous work suggesting that the understudied P3a may have good complementary utility as a marker of early cortical dysfunction in psychosis.


2019 ◽  
Vol 30 ◽  
pp. 100302
Author(s):  
Julio Llamas-Alonso ◽  
Miguel Angel Guevara ◽  
Marisela Hernández-González ◽  
Jorge C. Hevia-Orozco ◽  
Mayra L. Almanza-Sepúlveda

2003 ◽  
Vol 15 (7) ◽  
pp. 1039-1051 ◽  
Author(s):  
Ute Leonards ◽  
Julie Palix ◽  
Christoph Michel ◽  
Vicente Ibanez

Functional magnetic resonance imaging studies have indicated that efficient feature search (FS) and inefficient conjunction search (CS) activate partially distinct frontoparietal cortical networks. However, it remains a matter of debate whether the differences in these networks reflect differences in the early processing during FS and CS. In addition, the relationship between the differences in the networks and spatial shifts of attention also remains unknown. We examined these issues by applying a spatio-temporal analysis method to high-resolution visual event-related potentials (ERPs) and investigated how spatio-temporal activation patterns differ for FS and CS tasks. Within the first 450 msec after stimulus onset, scalp potential distributions (ERP maps) revealed 7 different electric field configurations for each search task. Configuration changes occurred simultaneously in the two tasks, suggesting that contributing processes were not significantly delayed in one task compared to the other. Despite this high spatial and temporal correlation, two ERP maps (120–190 and 250–300 msec) differed between the FS and CS. Lateralized distributions were observed only in the ERP map at 250–300 msec for the FS. This distribution corresponds to that previously described as the N2pc component (a negativity in the time range of the N2 complex over posterior electrodes of the hemisphere contralateral to the target hemifield), which has been associated with the focusing of attention onto potential target items in the search display. Thus, our results indicate that the cortical networks involved in feature and conjunction searching partially differ as early as 120 msec after stimulus onset and that the differences between the networks employed during the early stages of FS and CS are not necessarily caused by spatial attention shifts.


2020 ◽  
Vol 107 ◽  
pp. 106271
Author(s):  
Bao Zhang ◽  
Shuhui Liu ◽  
Cenlou Hu ◽  
Ziwen Luo ◽  
Sai Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document