first episode
Recently Published Documents





2022 ◽  
Vol 28 ◽  
pp. 100234
Emmanuel K. Mwesiga ◽  
Reuben Robbins ◽  
Dickens Akena ◽  
Nastassja Koen ◽  
Juliet Nakku ◽  

2022 ◽  
Vol 240 ◽  
pp. 24-30
Lida Alkisti Xenaki ◽  
Pentagiotissa Stefanatou ◽  
Eirini Ralli ◽  
Alex Hatzimanolis ◽  
Stefanos Dimitrakopoulos ◽  

Inês Carreira Figueiredo ◽  
Faith Borgan ◽  
Ofer Pasternak ◽  
Federico E. Turkheimer ◽  
Oliver D. Howes

AbstractWhite-matter abnormalities, including increases in extracellular free-water, are implicated in the pathophysiology of schizophrenia. Recent advances in diffusion magnetic resonance imaging (MRI) enable free-water levels to be indexed. However, the brain levels in patients with schizophrenia have not yet been systematically investigated. We aimed to meta-analyse white-matter free-water levels in patients with schizophrenia compared to healthy volunteers. We performed a literature search in EMBASE, MEDLINE, and PsycINFO databases. Diffusion MRI studies reporting free-water in patients with schizophrenia compared to healthy controls were included. We investigated the effect of demographic variables, illness duration, chlorpromazine equivalents of antipsychotic medication, type of scanner, and clinical symptoms severity on free-water measures. Ten studies, including five of first episode of psychosis have investigated free-water levels in schizophrenia, with significantly higher levels reported in whole-brain and specific brain regions (including corona radiata, internal capsule, superior and inferior longitudinal fasciculus, cingulum bundle, and corpus callosum). Six studies, including a total of 614 participants met the inclusion criteria for quantitative analysis. Whole-brain free-water levels were significantly higher in patients relative to healthy volunteers (Hedge’s g = 0.38, 95% confidence interval (CI) 0.07–0.69, p = 0.02). Sex moderated this effect, such that smaller effects were seen in samples with more females (z = −2.54, p < 0.05), but antipsychotic dose, illness duration and symptom severity did not. Patients with schizophrenia have increased free-water compared to healthy volunteers. Future studies are necessary to determine the pathological sources of increased free-water, and its relationship with illness duration and severity.

2022 ◽  
Sidhant Chopra ◽  
Stuart Oldham ◽  
Ashlea Segal ◽  
Alexander Holmes ◽  
Kristina Sabaroedin ◽  

Background: Different regions of the brain's grey matter are connected by a complex structural network of white matter fibres which are responsible for the propagation of action potentials and the transport of trophic and other molecules. In neurodegenerative disease, these connections constrain the way in which grey matter volume loss progresses. Here, we investigated whether connectome architecture also shapes the spatial pattern of longitudinal grey matter volume changes attributable to illness and antipsychotic medication in first episode psychosis (FEP). Methods: We conducted a triple-blind randomised placebo-control MRI study where 62 young adults with first episode psychosis received either an atypical antipsychotic or placebo over 6-months. A healthy control group was also recruited. Anatomical MRI scans were acquired at baseline, 3-months and 12-months. Deformation-based morphometry was used to estimate illness-related and antipsychotic-related grey matter volume changes over time. Representative functional and structural brain connectivity patterns were derived from an independent healthy control group using resting-state functional MRI and diffusion-weighted imaging. We used neighbourhood deformation models to predict the extent of brain change in a given area by the changes observed in areas to which it is either structurally connected or functionally coupled. Results: At baseline, we found that empirical illness-related regional volume differences were strongly correlated with predicted differences using a model constrained by structural connectivity weights (ρ = .541; p < .001). At 3-months and 12-months, we also found a strong correlation between longitudinal regional illness-related (ρ > .516; p < .001) and antipsychotic-related volume change (ρ > .591; p < .001) with volumetric changes in structurally connected areas. These correlations were significantly greater than those observed across various null models accounting for lower-order spatial and network properties of the data. Associations between empirical and predicted volume change estimates were much lower for models that only considered binary structural connectivity (all ρ < .376), or which were constrained by inter-regional functional coupling (all ρ < .436). Finally, we found that potential epicentres of volume change emerged posteriorly early in the illness and shifted to the prefrontal cortex by later illness stages. Conclusion: Psychosis- and antipsychotic-related grey matter volume changes are strongly shaped by anatomical brain connectivity. This result is consistent with findings in other neurological disorders and implies that such connections may constrain pathological processes causing brain dysfunction in FEP.

2022 ◽  
Vol 3 ◽  
Edward J. Goetzl ◽  
Holden T. Maecker ◽  
Yael Rosenberg-Hasson ◽  
Lorrin M. Koran

The retention of the heavy metal, gadolinium, after a Gadolinium-Based Contrast Agent-assisted MRI may lead to a symptom cluster termed Gadolinium Deposition Disease. Little is known of the disorder’s underlying pathophysiology, but a recent study reported abnormally elevated serum levels of pro-inflammatory cytokines compared to normal controls. As a calcium channel blocker in cellular plasma and mitochondrial membranes, gadolinium also interferes with mitochondrial function. We applied to sera from nine Gadolinium Deposition Disease and two Gadolinium Storage Condition patients newly developed methods allowing isolation of plasma neuron-derived extracellular vesicles that contain reproducibly quantifiable levels of mitochondrial proteins of all major classes. Patients’ levels of five mitochondrial functional proteins were statistically significantly lower and of two significantly higher than the levels in normal controls. The patterns of differences between study patients and controls for mitochondrial dynamics and mitochondrial proteins encompassing neuronal energy generation, metabolic regulation, ion fluxes, and survival differed from those seen for patients with first episode psychosis and those with Major Depressive Disorder compared to their controls. These findings suggest that mitochondrial dysfunction due to retained gadolinium may play a role in causing Gadolinium Deposition Disease. Larger samples of both GDD and GSC patients are needed to allow not only testing the repeatability of our findings, but also investigation of relationships of specific mitochondrial protein deficiencies or excesses and concurrent cytokine, genetic, or other factors to GDD’s neurological and cognitive symptoms. Studies of neuronal mitochondrial proteins as diagnostic markers or indicators of treatment effectiveness are also warranted.

2022 ◽  
Vol 12 (1) ◽  
pp. 93
Rodrigo San-Martin ◽  
Maria Zimiani ◽  
Milton de Ávila ◽  
Rosana Shuhama ◽  
Cristina Del-Ben ◽  

Background: Altered sensorimotor gating has been demonstrated by Prepulse Inhibition (PPI) tests in patients with psychosis. Recent advances in signal processing methods allow assessment of neural PPI through electroencephalogram (EEG) recording during acoustic startle response measures (classic muscular PPI). Simultaneous measurements of muscular (eye-blink) and neural gating phenomena during PPI test may help to better understand sensorial processing dysfunctions in psychosis. In this study, we aimed to assess simultaneously muscular and neural PPI in early bipolar disorder and schizophrenia patients. Method: Participants were recruited from a population-based case-control study of first episode psychosis. PPI was measured using electromyography (EMG) and EEG in pulse alone and prepulse + pulse with intervals of 30, 60, and 120 ms in early bipolar disorder (n = 18) and schizophrenia (n = 11) patients. As control group, 15 socio-economically matched healthy subjects were recruited. All subjects were evaluated with Rating Scale, Hamilton Rating Scale for Depression, and Young Mania Rating Scale questionnaires at recruitment and just before PPI test. Wilcoxon ranked sum tests were used to compare PPI test results between groups. Results: In comparison to healthy participants, neural PPI was significantly reduced in PPI 30 and PPI60 among bipolar and schizophrenia patients, while muscular PPI was reduced in PPI60 and PPI120 intervals only among patients with schizophrenia. Conclusion: The combination of muscular and neural PPI evaluations suggested distinct impairment patterns among schizophrenia and bipolar disorder patients. Simultaneous recording may contribute with novel information in sensory gating investigations.

2022 ◽  
pp. 1-10
Martin Lepage ◽  
Christopher R. Bowie ◽  
Tina Montreuil ◽  
Larry Baer ◽  
Olivier Percie du Sert ◽  

Abstract Background Social anxiety (SA), a prevalent comorbid condition in psychotic disorders with a negative impact on functioning, requires adequate intervention relatively early. Using a randomized controlled trial, we tested the efficacy of a group cognitive-behavioral therapy intervention for SA (CBT-SA) that we developed for youth who experienced the first episode of psychosis (FEP). For our primary outcome, we hypothesized that compared to the active control of group cognitive remediation (CR), the CBT-SA group would show a reduction in SA that would be maintained at 3- and 6-month follow-ups. For secondary outcomes, it was hypothesized that the CBT-SA group would show a reduction of positive and negative symptoms and improvements in recovery and functioning. Method Ninety-six patients with an FEP and SA, recruited from five different FEP programs in the Montreal area, were randomized to 13 weekly group sessions of either CBT-SA or CR intervention. Results Linear mixed models revealed that multiple measures of SA significantly reduced over time, but with no significant group differences. Positive and negative symptoms, as well as functioning improved over time, with negative symptoms and functioning exhibiting a greater reduction in the CBT-SA group. Conclusions While SA decreased over time with both interventions, a positive effect of the CBT-SA intervention on measures of negative symptoms, functioning, and self-reported recovery at follow-up suggests that our intervention had a positive effect that extended beyond symptoms specific to SA. identifier: NCT02294409.

Sign in / Sign up

Export Citation Format

Share Document