scholarly journals A Silicon Model Of Auditory Localization

1989 ◽  
Vol 1 (1) ◽  
pp. 47-57 ◽  
Author(s):  
John Lazzaro ◽  
Carver A. Mead

The barn owl accurately localizes sounds in the azimuthal plane, using interaural time difference as a cue. The time-coding pathway in the owl's brainstem encodes a neural map of azimuth, by processing interaural timing information. We have built a silicon model of the time-coding pathway of the owl. The integrated circuit models the structure as well as the function of the pathway; most subcircuits in the chip have an anatomical correlate. The chip computes all outputs in real time, using analog, continuous-time processing.

2008 ◽  
Vol 100 (2) ◽  
pp. 708-715 ◽  
Author(s):  
Brian J. Fischer ◽  
Masakazu Konishi

The interaural time difference (ITD) is the primary auditory cue used by the barn owl for localization in the horizontal direction. ITD is initially computed by circuits consisting of axonal delay lines from one of the cochlear nuclei and coincidence detector neurons in the nucleus laminaris (NL). NL projects directly to the anterior part of the dorsal lateral lemniscal nucleus (LLDa), and this area projects to the core of the central nucleus of the inferior colliculus (ICcc) in the midbrain. To show the selectivity of an NL neuron for ITD requires averaging of responses over several stimulus presentations for each ITD. In contrast, ICcc neurons detect their preferred ITD in a single burst of stimulus. We recorded extracellularly the responses of LLDa neurons to ITD in anesthetized barn owls and show that this ability is already present in LLDa, raising the possibility that ICcc inherits its noise reduction property from LLDa.


2010 ◽  
Vol 104 (4) ◽  
pp. 1946-1954 ◽  
Author(s):  
Martin Singheiser ◽  
Brian J. Fischer ◽  
Hermann Wagner

The functional role of the low-frequency range (<3 kHz) in barn owl hearing is not well understood. Here, it was tested whether cochlear delays could explain the representation of interaural time difference (ITD) in this frequency range. Recordings were obtained from neurons in the core of the central nucleus of the inferior colliculus. The response of these neurons varied with the ITD of the stimulus. The response peak shared by all neurons in a dorsoventral penetration was called the array-specific ITD and served as criterion for the representation of a given ITD in a neuron. Array-specific ITDs were widely distributed. Isolevel frequency response functions obtained with binaural, contralateral, and ispilateral stimulation exhibited a clear response peak and the accompanying frequency was called the best frequency. The data were tested with respect to predictions of a model, the stereausis model, assuming cochlear delays as source for the best ITD of a neuron. According to this model, different cochlear delays determined by mismatches between the ipsilateral and contralateral best frequencies are the source for the ITD in a binaural neuron. The mismatch should depend on the best frequency and the best ITD. The predictions of the stereausis model were not fulfilled in the low best-frequency neurons analyzed here. It is concluded that cochlear delays are not responsible for the representation of best ITD in the barn owl.


2017 ◽  
Vol 118 (3) ◽  
pp. 1871-1887
Author(s):  
Philipp Tellers ◽  
Jessica Lehmann ◽  
Hartmut Führ ◽  
Hermann Wagner

Birds and mammals use the interaural time difference (ITD) for azimuthal sound localization. While barn owls can use the ITD of the stimulus carrier frequency over nearly their entire hearing range, mammals have to utilize the ITD of the stimulus envelope to extend the upper frequency limit of ITD-based sound localization. ITD is computed and processed in a dedicated neural circuit that consists of two pathways. In the barn owl, ITD representation is more complex in the forebrain than in the midbrain pathway because of the combination of two inputs that represent different ITDs. We speculated that one of the two inputs includes an envelope contribution. To estimate the envelope contribution, we recorded ITD response functions for correlated and anticorrelated noise stimuli in the barn owl’s auditory arcopallium. Our findings indicate that barn owls, like mammals, represent both carrier and envelope ITDs of overlapping frequency ranges, supporting the hypothesis that carrier and envelope ITD-based localization are complementary beyond a mere extension of the upper frequency limit. NEW & NOTEWORTHY The results presented in this study show for the first time that the barn owl is able to extract and represent the interaural time difference (ITD) information conveyed by the envelope of a broadband acoustic signal. Like mammals, the barn owl extracts the ITD of the envelope and the carrier of a signal from the same frequency range. These results are of general interest, since they reinforce a trend found in neural signal processing across different species.


Author(s):  
Daiki Matsumoto ◽  
Ryuji Hirayama ◽  
Naoto Hoshikawa ◽  
Hirotaka Nakayama ◽  
Tomoyoshi Shimobaba ◽  
...  

Author(s):  
David J. Lobina

The study of cognitive phenomena is best approached in an orderly manner. It must begin with an analysis of the function in intension at the heart of any cognitive domain (its knowledge base), then proceed to the manner in which such knowledge is put into use in real-time processing, concluding with a domain’s neural underpinnings, its development in ontogeny, etc. Such an approach to the study of cognition involves the adoption of different levels of explanation/description, as prescribed by David Marr and many others, each level requiring its own methodology and supplying its own data to be accounted for. The study of recursion in cognition is badly in need of a systematic and well-ordered approach, and this chapter lays out the blueprint to be followed in the book by focusing on a strict separation between how this notion applies in linguistic knowledge and how it manifests itself in language processing.


Sign in / Sign up

Export Citation Format

Share Document