Fully Convolutional Network-Based Multifocus Image Fusion

2018 ◽  
Vol 30 (7) ◽  
pp. 1775-1800 ◽  
Author(s):  
Xiaopeng Guo ◽  
Rencan Nie ◽  
Jinde Cao ◽  
Dongming Zhou ◽  
Wenhua Qian

As the optical lenses for cameras always have limited depth of field, the captured images with the same scene are not all in focus. Multifocus image fusion is an efficient technology that can synthesize an all-in-focus image using several partially focused images. Previous methods have accomplished the fusion task in spatial or transform domains. However, fusion rules are always a problem in most methods. In this letter, from the aspect of focus region detection, we propose a novel multifocus image fusion method based on a fully convolutional network (FCN) learned from synthesized multifocus images. The primary novelty of this method is that the pixel-wise focus regions are detected through a learning FCN, and the entire image, not just the image patches, are exploited to train the FCN. First, we synthesize 4500 pairs of multifocus images by repeatedly using a gaussian filter for each image from PASCAL VOC 2012, to train the FCN. After that, a pair of source images is fed into the trained FCN, and two score maps indicating the focus property are generated. Next, an inversed score map is averaged with another score map to produce an aggregative score map, which take full advantage of focus probabilities in two score maps. We implement the fully connected conditional random field (CRF) on the aggregative score map to accomplish and refine a binary decision map for the fusion task. Finally, we exploit the weighted strategy based on the refined decision map to produce the fused image. To demonstrate the performance of the proposed method, we compare its fused results with several start-of-the-art methods not only on a gray data set but also on a color data set. Experimental results show that the proposed method can achieve superior fusion performance in both human visual quality and objective assessment.

Author(s):  
Dan Liu ◽  
Dawei Du ◽  
Libo Zhang ◽  
Tiejian Luo ◽  
Yanjun Wu ◽  
...  

Existing hand detection methods usually follow the pipeline of multiple stages with high computation cost, i.e., feature extraction, region proposal, bounding box regression, and additional layers for rotated region detection. In this paper, we propose a new Scale Invariant Fully Convolutional Network (SIFCN) trained in an end-to-end fashion to detect hands efficiently. Specifically, we merge the feature maps from high to low layers in an iterative way, which handles different scales of hands better with less time overhead comparing to concatenating them simply. Moreover, we develop the Complementary Weighted Fusion (CWF) block to make full use of the distinctive features among multiple layers to achieve scale invariance. To deal with rotated hand detection, we present the rotation map to get rid of complex rotation and derotation layers. Besides, we design the multi-scale loss scheme to accelerate the training process significantly by adding supervision to the intermediate layers of the network. Compared with the state-of-the-art methods, our algorithm shows comparable accuracy and runs a 4.23 times faster speed on the VIVA dataset and achieves better average precision on Oxford hand detection dataset at a speed of 62.5 fps.


2020 ◽  
Vol 34 (07) ◽  
pp. 12104-12111
Author(s):  
Yi Tu ◽  
Li Niu ◽  
Weijie Zhao ◽  
Dawei Cheng ◽  
Liqing Zhang

Aesthetic image cropping is a practical but challenging task which aims at finding the best crops with the highest aesthetic quality in an image. Recently, many deep learning methods have been proposed to address this problem, but they did not reveal the intrinsic mechanism of aesthetic evaluation. In this paper, we propose an interpretable image cropping model to unveil the mystery. For each image, we use a fully convolutional network to produce an aesthetic score map, which is shared among all candidate crops during crop-level aesthetic evaluation. Then, we require the aesthetic score map to be both composition-aware and saliency-aware. In particular, the same region is assigned with different aesthetic scores based on its relative positions in different crops. Moreover, a visually salient region is supposed to have more sensitive aesthetic scores so that our network can learn to place salient objects at more proper positions. Such an aesthetic score map can be used to localize aesthetically important regions in an image, which sheds light on the composition rules learned by our model. We show the competitive performance of our model in the image cropping task on several benchmark datasets, and also demonstrate its generality in real-world applications.


2019 ◽  
Vol 13 (4) ◽  
pp. 583-590 ◽  
Author(s):  
Jianwei Zhang ◽  
Junting He ◽  
Tianfu Chen ◽  
Zhenmei Liu ◽  
Danni Chen

2019 ◽  
Vol 85 (10) ◽  
pp. 737-752
Author(s):  
Yihua Tan ◽  
Shengzhou Xiong ◽  
Zhi Li ◽  
Jinwen Tian ◽  
Yansheng Li

The analysis of built-up areas has always been a popular research topic for remote sensing applications. However, automatic extraction of built-up areas from a wide range of regions remains challenging. In this article, a fully convolutional network (FCN)–based strategy is proposed to address built-up area extraction. The proposed algorithm can be divided into two main steps. First, divide the remote sensing image into blocks and extract their deep features by a lightweight multi-branch convolutional neural network (LMB-CNN). Second, rearrange the deep features into feature maps that are fed into a well-designed FCN for image segmentation. Our FCN is integrated with multi-branch blocks and outputs multi-channel segmentation masks that are utilized to balance the false alarm and missing alarm. Experiments demonstrate that the overall classification accuracy of the proposed algorithm can achieve 98.75% in the test data set and that it has a faster processing compared with the existing state-of-the-art algorithms.


2020 ◽  
Vol 79 (21-22) ◽  
pp. 15001-15014 ◽  
Author(s):  
Yufang Feng ◽  
Houqing Lu ◽  
Jingbo Bai ◽  
Lin Cao ◽  
Hong Yin

Author(s):  
Yu Liu ◽  
Xun Chen ◽  
Juan Cheng ◽  
Hu Peng ◽  
Zengfu Wang

The fusion of infrared and visible images of the same scene aims to generate a composite image which can provide a more comprehensive description of the scene. In this paper, we propose an infrared and visible image fusion method based on convolutional neural networks (CNNs). In particular, a siamese convolutional network is applied to obtain a weight map which integrates the pixel activity information from two source images. This CNN-based approach can deal with two vital issues in image fusion as a whole, namely, activity level measurement and weight assignment. Considering the different imaging modalities of infrared and visible images, the merging procedure is conducted in a multi-scale manner via image pyramids and a local similarity-based strategy is adopted to adaptively adjust the fusion mode for the decomposed coefficients. Experimental results demonstrate that the proposed method can achieve state-of-the-art results in terms of both visual quality and objective assessment.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 558
Author(s):  
Anping Song ◽  
Xiaokang Xu ◽  
Xinyi Zhai

Rotation-Invariant Face Detection (RIPD) has been widely used in practical applications; however, the problem of the adjusting of the rotation-in-plane (RIP) angle of the human face still remains. Recently, several methods based on neural networks have been proposed to solve the RIP angle problem. However, these methods have various limitations, including low detecting speed, model size, and detecting accuracy. To solve the aforementioned problems, we propose a new network, called the Searching Architecture Calibration Network (SACN), which utilizes architecture search, fully convolutional network (FCN) and bounding box center cluster (CC). SACN was tested on the challenging Multi-Oriented Face Detection Data Set and Benchmark (MOFDDB) and achieved a higher detecting accuracy and almost the same speed as existing detectors. Moreover, the average angle error is optimized from the current 12.6° to 10.5°.


Sign in / Sign up

Export Citation Format

Share Document