scholarly journals SACN: A Novel Rotating Face Detector Based on Architecture Search

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 558
Author(s):  
Anping Song ◽  
Xiaokang Xu ◽  
Xinyi Zhai

Rotation-Invariant Face Detection (RIPD) has been widely used in practical applications; however, the problem of the adjusting of the rotation-in-plane (RIP) angle of the human face still remains. Recently, several methods based on neural networks have been proposed to solve the RIP angle problem. However, these methods have various limitations, including low detecting speed, model size, and detecting accuracy. To solve the aforementioned problems, we propose a new network, called the Searching Architecture Calibration Network (SACN), which utilizes architecture search, fully convolutional network (FCN) and bounding box center cluster (CC). SACN was tested on the challenging Multi-Oriented Face Detection Data Set and Benchmark (MOFDDB) and achieved a higher detecting accuracy and almost the same speed as existing detectors. Moreover, the average angle error is optimized from the current 12.6° to 10.5°.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yi-Hung Liu ◽  
Yung Ting ◽  
Shian-Shing Shyu ◽  
Chang-Kuo Chen ◽  
Chung-Lin Lee ◽  
...  

Face detection is a crucial prestage for face recognition and is often treated as a binary (face and nonface) classification problem. While this strategy is simple to implement, face detection accuracy would drop when nonface training patterns are undersampled. To avoid these problems, we propose in this paper a one-class learning-based face detector called support vector data description (SVDD) committee, which consists of several SVDD members, each of which is trained on a subset of face patterns. Nonfaces are not required in the training of the SVDD committee. Therefore, the face detection accuracy of SVDD committee is independent of the nonface training patterns. Moreover, the proposed SVDD committee is also able to improve generalization ability of the original SVDD when the face data set has a multicluster distribution. Experiments carried out on the extended MIT face data set show that the proposed SVDD committee can achieve better face detection accuracy than the widely used SVM face detector and performs better than other one-class classifiers, including the original SVDD and the kernel principal component analysis (Kernel PCA).


1997 ◽  
Author(s):  
Henry A. Rowley ◽  
Shumeet Baluja ◽  
Takeo Kanade

2018 ◽  
Vol 10 (8) ◽  
pp. 80
Author(s):  
Lei Zhang ◽  
Xiaoli Zhi

Convolutional neural networks (CNN for short) have made great progress in face detection. They mostly take computation intensive networks as the backbone in order to obtain high precision, and they cannot get a good detection speed without the support of high-performance GPUs (Graphics Processing Units). This limits CNN-based face detection algorithms in real applications, especially in some speed dependent ones. To alleviate this problem, we propose a lightweight face detector in this paper, which takes a fast residual network as backbone. Our method can run fast even on cheap and ordinary GPUs. To guarantee its detection precision, multi-scale features and multi-context are fully exploited in efficient ways. Specifically, feature fusion is used to obtain semantic strongly multi-scale features firstly. Then multi-context including both local and global context is added to these multi-scale features without extra computational burden. The local context is added through a depthwise separable convolution based approach, and the global context by a simple global average pooling way. Experimental results show that our method can run at about 110 fps on VGA (Video Graphics Array)-resolution images, while still maintaining competitive precision on WIDER FACE and FDDB (Face Detection Data Set and Benchmark) datasets as compared with its state-of-the-art counterparts.


Author(s):  
CHIN-CHEN CHANG ◽  
YUAN-HUI YU

This paper proposes an efficient approach for human face detection and exact facial features location in a head-and-shoulder image. This method searches for the eye pair candidate as a base line by using the characteristic of the high intensity contrast between the iris and the sclera. To discover other facial features, the algorithm uses geometric knowledge of the human face based on the obtained eye pair candidate. The human face is finally verified with these unclosed facial features. Due to the merits of applying the Prune-and-Search and simple filtering techniques, we have shown that the proposed method indeed achieves very promising performance of face detection and facial feature location.


2013 ◽  
Vol 753-755 ◽  
pp. 2941-2944
Author(s):  
Ming Hui Zhang ◽  
Yao Yu Zhang

Seeing that human face features are unique, an increasing number of face recognition algorithms on existing ATM are proposed. Since face detection is a primary link of face recognition, our system adopts AdaBoost algorithm which is based on face detection. Experiment results demonstrated that the computing time of face detection using this algorithm is about 70ms, and the single and multiple human faces can be effectively measured under well environment, which meets the demand of the system.


Author(s):  
Shaoqiang Wang ◽  
Shudong Wang ◽  
Song Zhang ◽  
Yifan Wang

Abstract To automatically detect dynamic EEG signals to reduce the time cost of epilepsy diagnosis. In the signal recognition of electroencephalogram (EEG) of epilepsy, traditional machine learning and statistical methods require manual feature labeling engineering in order to show excellent results on a single data set. And the artificially selected features may carry a bias, and cannot guarantee the validity and expansibility in real-world data. In practical applications, deep learning methods can release people from feature engineering to a certain extent. As long as the focus is on the expansion of data quality and quantity, the algorithm model can learn automatically to get better improvements. In addition, the deep learning method can also extract many features that are difficult for humans to perceive, thereby making the algorithm more robust. Based on the design idea of ResNeXt deep neural network, this paper designs a Time-ResNeXt network structure suitable for time series EEG epilepsy detection to identify EEG signals. The accuracy rate of Time-ResNeXt in the detection of EEG epilepsy can reach 91.50%. The Time-ResNeXt network structure produces extremely advanced performance on the benchmark dataset (Berne-Barcelona dataset) and has great potential for improving clinical practice.


Sign in / Sign up

Export Citation Format

Share Document