scholarly journals A Physics-Driven Neural Networks-Based Simulation System (PhyNNeSS) for Multimodal Interactive Virtual Environments Involving Nonlinear Deformable Objects

2011 ◽  
Vol 20 (4) ◽  
pp. 289-308 ◽  
Author(s):  
Suvranu De ◽  
Dhannanjay Deo ◽  
Ganesh Sankaranarayanan ◽  
Venkata S. Arikatla

While an update rate of 30 Hz is considered adequate for real-time graphics, a much higher update rate of about 1 kHz is necessary for haptics. Physics-based modeling of deformable objects, especially when large nonlinear deformations and complex nonlinear material properties are involved, at these very high rates is one of the most challenging tasks in the development of real-time simulation systems. While some specialized solutions exist, there is no general solution for arbitrary nonlinearities. In this work we present PhyNNeSS—a Physics-driven Neural Networks-based Simulation System—to address this long-standing technical challenge. The first step is an offline precomputation step in which a database is generated by applying carefully prescribed displacements to each node of the finite element models of the deformable objects. In the next step, the data is condensed into a set of coefficients describing neurons of a Radial Basis Function Network (RBFN). During real-time computation, these neural networks are used to reconstruct the deformation fields as well as the interaction forces. We present realistic simulation examples from interactive surgical simulation with real-time force feedback. As an example, we have developed a deformable human stomach model and a Penrose drain model used in the Fundamentals of Laparoscopic Surgery (FLS) training tool box. A unique computational modeling system has been developed that is capable of simulating the response of nonlinear deformable objects in real time. The method distinguishes itself from previous efforts in that a systematic physics-based precomputational step allows training of neural networks which may be used in real-time simulations. We show, through careful error analysis, that the scheme is scalable, with the accuracy being controlled by the number of neurons used in the simulation. PhyNNeSS has been integrated into SoFMIS (Software Framework for Multimodal Interactive Simulation) for general use.

Author(s):  
Jinling Wang ◽  
Wen F. Lu

Virtual reality technology plays an important role in the fields of product design, computer animation, medical simulation, cloth motion, and many others. Especially with the emergence of haptics technology, virtual simulation system provides an intuitive way of human and computer interaction, which allows user to feel and touch the virtual environment. For a real-time simulation system, a physically based deformable model including complex material properties with a high resolution is required. However, such deformable model hardly satisfies the update rate of interactive haptic rendering that exceeds 1 kHz. To tackle this challenge, a real-time volumetric model with haptic feedback is developed in this paper. This model, named as Adaptive S-chain model, extends the S-chain model and integrates the energy-based wave propagation method by the proposed adaptive re-mesh method to achieve realistic graphic and haptic deformation results. The implemented results show that the nonlinear, heterogeneous, anisotropic, shape retaining material properties and large range deformation are well modeled. An accurate force feedback is generated by the proposed Adaptive S-chain model in case study which is quite close to the experiment data.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Guillaume Kazmitcheff ◽  
Yann Nguyen ◽  
Mathieu Miroir ◽  
Fabien Péan ◽  
Evelyne Ferrary ◽  
...  

Otological microsurgery is delicate and requires high dexterity in bad ergonomic conditions. To assist surgeons in these indications, a teleoperated system, called RobOtol, is developed. This robot enhances gesture accuracy and handiness and allows exploration of new procedures for middle ear surgery. To plan new procedures that exploit the capacities given by the robot, a surgical simulator is developed. The simulation reproduces with high fidelity the behavior of the anatomical structures and can also be used as a training tool for an easier control of the robot for surgeons. In the paper, we introduce the middle ear surgical simulation and then we perform virtually two challenging procedures with the robot. We show how interactive simulation can assist in analyzing the benefits of robotics in the case of complex manipulations or ergonomics studies and allow the development of innovative surgical procedures. New robot-based microsurgical procedures are investigated. The improvement offered by RobOtol is also evaluated and discussed.


2014 ◽  
Vol 926-930 ◽  
pp. 2853-2856
Author(s):  
Ying Chun Huang ◽  
Jian Yang ◽  
Zeng Fan ◽  
Xiao Xiao Li

The Simulation technology of OTV based on HLA was researched in this essay. Based on the technology, a distributed visual simulation system is established on the basis of HLA and STK, in which the space orbit transferring vehicle can fly around the low-orbit target, while hovering under the high-orbit target. The real time interactive simulation among the members that are located in different physical nodes of the system is implemented via their cooperation, and the scope of using the visual simulation is expanded as well.


BMC Surgery ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Takashi Mori ◽  
Koji Ikeda ◽  
Nobuyoshi Takeshita ◽  
Koichi Teramura ◽  
Masaaki Ito

Abstract Background Mastery of technical skills is one of the fundamental goals of surgical training for novices. Meanwhile, performing laparoscopic procedures requires exceptional surgical skills compared to open surgery. However, it is often difficult for trainees to learn through observation and practice only. Virtual reality (VR)-based surgical simulation is expanding and rapidly advancing. A major obstacle for laparoscopic trainees is the difficulty of well-performed dissection. Therefore, we developed a new VR simulation system, Lap-PASS LP-100, which focuses on training to create proper tension on the tissue in laparoscopic sigmoid colectomy dissection. This study aimed to validate this new VR simulation system. Methods A total of 50 participants were asked to perform medial dissection of the meso-sigmoid colon on the VR simulator. Forty-four surgeons and six non-medical professionals working in the National Cancer Center Hospital East, Japan, were enrolled in this study. The surgeons were: laparoscopic surgery experts with > 100 laparoscopic surgeries (LS), 21 were novices with experience < 100 LS, and five without previous experience in LS. The participants’ surgical performance was evaluated by three blinded raters using Global Operative Assessment of Laparoscopic Skills (GOALS). Results There were significant differences (P-values < 0.044) in all GOALS items between the non-medical professionals and surgeons. The experts were significantly superior to the novices in one item of GOALS: efficiency ([4(4–5) vs. 4(3–4)], with a 95% confidence interval, p = 0.042). However, both bimanual dexterity and total score in the experts were not statistically different but tended to be higher than in the novices. Conclusions Our study demonstrated a full validation of our new system. This could detect the surgeons' ability to perform surgical dissection and suggest that this VR simulator could be an effective training tool. This surgical VR simulator might have tremendous potential to enhance training for surgeons.


Sign in / Sign up

Export Citation Format

Share Document