Compact and High Selectivity Dual-Band Bandpass Filter Using Nested Dual-Mode Defected Ground Structure Resonators

2012 ◽  
Vol 26 (4) ◽  
pp. 549-559 ◽  
Author(s):  
L. Wang ◽  
B.-R. Guan
2020 ◽  
Vol 71 (6) ◽  
pp. 433-435
Author(s):  
Shan Shan Gao ◽  
Jia-Lin Li ◽  
Zhe Lin Zhu ◽  
Jia Li Xu ◽  
Yong Xin Zhao

AbstractAn improved feedline configuration for dual-mode resonator filter is investigated in this paper. Based on the introduced topology, a dual-mode dual-band bandpass filter with center frequencies of 1.8 and 2.4 GHz is optimally designed, fabricated and tested. The introduced dual-band bandpass filter has simple structure and enables high selectivity to be realized due to two pairs of transmission zeros located near to the lower and upper passband, respectively. Both measured and simulated performances are presented with good consistency.


Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 293-300
Author(s):  
Dinghong Jia ◽  
Jianqin Deng ◽  
Yangping Zhao ◽  
Ke Wu

Abstract This work presents an approach to developing dual-mode dual-band substrate integrated waveguide (SIW) bandpass filter based on multilayer process. TE102/TE201 and TE101/TE102 modes are used to feature the two passbands, respectively. To begin with, large range of band location ratios are decided by the effective dimension of the SIW resonator. With reference to the field distribution, independent coupling schemes of the dual-modes are then realized by slots or circular apertures etched on the middle metal layer. It allows to not only introduce a large design freedom of bandwidth but also keep compactness. Finally, source-load and mixed couplings are deployed to produce transmission zeros around the passband in providing a sharp selectivity in the two filters, respectively. The details to independently control the center frequencies and bandwidth of two passbands are also presented. A two-order double-layered and a triple-layered SIW dual-band bandpass filter are prototyped to evaluate the proposed design approach, respectively. Results show a good agreement between simulations and measurements. The proposed filter exhibits flexible design freedom, high selectivity as well as good out-of-band rejection.


Author(s):  
Nur Azura Shamsudin ◽  
◽  
Shaharil Mohd Shah ◽  

This work presents the performance of a miniaturized dual-band dual-mode microstrip patch antenna with Defected Ground Structure (DGS) at 2.45 GHz and 5.8 GHz on the stacked substrate configuration in the order of FR-4 – PDMS- FR-4. The antenna offers a promising solution for wearable applications in the ISM bands. The first substrate is a flexible Flame Retardant 4 (FR-4) and the other substrate is a highly flexible Polydimethyl Siloxane (PDMS). The size of the antenna was reduced from 50 × 50 mm2 to 30 × 30 mm2, by introducing DGS on the ground plane. A single U-slot on the rectangular radiating patch was introduced to produce the upper resonant frequency of 5.8 GHz while the existing square patch is to generate the lower resonant frequency of 2.45 GHz. The simulations on the dual-band dual-mode microstrip patch antenna shows the reflection coefficient, S11 at 2.45 GHz is -17.848 dB with a bandwidth of 278.8 MHz and -13.779 dB with a bandwidth of 273 MHz at 5.8 GHz. A unidirectional radiation pattern observed in the E-plane shows that the antenna could be applied for off-body communication while an omnidirectional radiation pattern in the H-plane showed that the antenna can be used for on-body communication. Bending investigation were performed for the antenna over a vacuum cylinder with varying diameters of 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm and 120 mm in the CST MWS® software. From the graph of reflection coefficients, the performance of the antenna were not affected in bending condition. The SAR simulations showed that the SAR limits obey the guidelines as stipulated by the Federal Communication Commission (FCC) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP) for 1 mW of input power. The 2.45 GHz SAR limit for 1 g of human tissue is 0.09007 W/kg (FCC standard: < 1.6 W/kg) while for 10 g is 0.01867 W/kg (ICNIRP standard: < 2 W/kg). For 5.8 GHz, the SAR limit for 1 g of human tissue is 0.115 W/kg and for 10 g is 0.03517 W/kg. Based on the performance of the antenna in bending condition and the SAR limits, it is safe to conclude that the antenna can be used for wearable applications at 2.45 GHz and 5.8 GHz of the ISM bands.


Sign in / Sign up

Export Citation Format

Share Document