bandpass filter
Recently Published Documents


TOTAL DOCUMENTS

6675
(FIVE YEARS 1225)

H-INDEX

73
(FIVE YEARS 10)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Junzhe Shen ◽  
Tian Qiang ◽  
Minjia Gao ◽  
Yangchuan Ma ◽  
Junge Liang ◽  
...  

In this paper, a bandpass filter (BPF) was developed utilizing GaAs-based integrated passive device technology which comprises an asymmetrical spiral inductor and an interleaved array capacitor, possessing two tuning modes: coarse-tuning and fine-tuning. By altering the number of layers and radius of the GaAs substrate metal spheres, capacitance variation from 0.071 to 0.106 pF for coarse-tuning, and of 0.0015 pF for fine-tuning, can be achieved. Five air bridges were employed in the asymmetrical spiral inductor to save space, contributing to a compact chip area of 0.015λ0 × 0.018λ0. The BPF chip was installed on the printed circuit board artwork with Au bonding wire and attached to a die sink. Measured results demonstrate an insertion loss of 0.38 dB and a return loss of 21.5 dB at the center frequency of 2.147 GHz. Furthermore, under coarse-tuning mode, variation in the center frequency from 1.956 to 2.147 GHz and transmission zero frequency from 4.721 to 5.225 GHz can be achieved. Under fine-tuning mode, the minimum tuning value and the average tuning value of the proposed BPF can be accurate to 1.0 MHz and 4.7 MHz for the center frequency and 1.0 MHz and 12.8 MHz for the transmission zero frequency, respectively.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 219
Author(s):  
Tae-Hyeon Lee ◽  
Ki-Cheol Yoon ◽  
Kwang Gi Kim

A stepped impedance resonator (SIR) is suitable for designing a dual-band bandpass filter (BPF) that can be adjusted to reject spurious bands. A BPF is proposed using an SIR T-shaped meander line and folded structure. The BPF mainly comprises a meander line, a folded structure, and a T-shaped line. A novel BPF is used for the T-shaped line, which operates as a band-stop filter connecting to the center of the BPF. As a result, the complete BPF enables dual-band operation. The insertion and return losses of the first frequency passband (f01) are 0.024 and 17.3 dB, respectively, with a bandwidth of 46% at a center frequency of 2.801 GHz (2.2–3.48 GHz). The insertion and return losses of the second frequency passband (f02) are 0.026 and 17.2 dB, respectively, with a bandwidth of 10% at a center frequency of 4.351 GHz (4.13–4.55 GHz). The proposed BPF provides low loss, a simple structure, and a small size of only 4.29 × 4.08 mm, and it can be integrated into mobile communications systems.


2022 ◽  
Vol 9 ◽  
Author(s):  
Nan Wang ◽  
Haokun Wei ◽  
Kun Gao ◽  
Xiting Ruan ◽  
Xiaojian Chen ◽  
...  

A novel dual-band bandpass filter (BPF) is proposed with independently controllable transmission zeros (TZs) which can realize widely tunable stopband bandwidth (BW). The planar microstrip filter consists of a three-degree L-C ladder lowpass filter loaded with two unsymmetrical shorted stubs which are used to produce different TZs. By tuning the parameters of the two unsymmetrical shorted stubs, the TZs can be independently controlled. Therefore, the BPF has independent controllable center frequencies (CFs), passband bandwidths, and stopband bandwidths between adjacent passbands. All the L-C values in the equivalent circuit of the proposed filter are optimized to fulfill the design specifications. For demonstration, a dual-band BPF is designed. The measured results show good agreement with the simulated ones.


2022 ◽  
Author(s):  
Vahid Najjari ◽  
Saeed Mirzanejhad ◽  
Amin Ghadi

Abstract A plasmonic refractive index sensor including a Metal-Insulator-Metal waveguide (MIM) with four teeth is proposed. Transmittance (T), Sensitivity (S) and Figure of Merit (FOM) investigated numerically and analysed via Finite Difference Time Domain method (FDTD). The simulation results show the generation of double Fano resonances in the system that the resonance wavelength and the resonance line-shapes can be adjusted by changing the geometry of the device. By optimizing the structure in the initial configuration, the maximum sensitivity of 1078nm/RIU and FOM of 3.62×105 is achieved. Then change the structure parameters. In this case, the maximum sensitivity and FOM are 1041nm/RIU and 2.94×104 respectively, thus two detection points can be used for the refractive index sensor. Due to proper performance and adjustable Fano resonance points, this structure is significant for fabricating sensitive refractive index sensor and plasmonic bandpass filter.


Sign in / Sign up

Export Citation Format

Share Document