design freedom
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 80)

H-INDEX

11
(FIVE YEARS 4)

Author(s):  
Rohana Huvat ◽  
◽  
Muhamad Asri Azizul ◽  
Syabillah Sulaiman ◽  
◽  
...  

Additive manufacturing (AM) is known as the technology which enable using a layer wise in fabrication of a complex part directly from CAD files without using any specific tooling. This manufacturing techniques offers many strategic advantages which include design freedom for the build of complex part geometries which cannot be made in other way, the ability to build functional part in a small size for the end user customization and its ability to do improvement for the expensive part in aerospace and other industries. The aim of this research is to study the effect of process parameter such as layer thickness, infill density and object orientation to the accuracy of printed part measurement with CAD model, surface roughness and mechanical strength of PLA and ABS material. Therefore, it is important to find the optimum value of dimensional accuracy, surface roughness and mechanical strength for both materials. To achieve the optimum value of dimensional accuracy, surface roughness and mechanical strength for both materials, Taguchi method L4 orthogonal array is used to conduct this experiment and Minitab 18 software will analyze the result and shows the best optimum value. The result from ANOVA analysis shows that object orientation gives highest contribution to the dimensional accuracy and surface roughness for both materials. Meanwhile, for mechanical strength layer thickness highly contributed to the ABS material and object orientation for the PLA material. A Car Backseat Headrest Hanger/Hook model is fabricated by the best optimal combination and level of process parameter of mechanical strength.


2021 ◽  
Author(s):  
Lingxiu Dong ◽  
Duo Shi ◽  
Fuqiang Zhang

3D printing, as a production technology, differs from conventional technologies in three characteristics: design freedom—that is, it can handle certain product designs that conventional technologies cannot; quality distinction—that is, depending on the focal quality dimension, it can lead to a quality level superior or inferior to that of conventional technologies; and natural flexibility—that is, it is endowed with capacity flexibility without sacrificing operational efficiency. This paper investigates the joint impact of these characteristics when a firm selects conceptual designs to form its product assortment, taking into account the production-technology choices available for each design: 3D printing and two conventional technologies (dedicated and traditional flexible). Some designs can be processed by using any technology (generic), whereas others are specific to 3D printing (3D-specific). The firm selects designs to be handled by each technology and then invests accordingly in technology adoption, product development, capacity, and production. We characterize the structure of the optimal assortment based on the popularity of each design. Within the sets of generic designs and 3D-specific designs, respectively, the most popular designs should be included in the assortment; under a mild condition, the optimal assortment comprises the most popular ones among all the designs. Within the optimal assortment, 3D printing should handle the less popular generic designs than conventional technologies. We further demonstrate that the design freedom or improved quality associated with 3D printing may reduce the firm’s optimal product variety. In the absence of design freedom and quality distinction, natural flexibility by itself always enhances product variety; by contrast, traditional flexible technology may reduce product variety. Numerical study shows that 3D printing tends to be more valuable when popularities of the generic designs are distributed more evenly and when popularities of the 3D-specific designs are distributed less evenly. This paper was accepted by Vishal Gaur, operations management.


ATZ worldwide ◽  
2021 ◽  
Vol 123 (12) ◽  
pp. 48-51
Author(s):  
Dirk Schultz ◽  
Alfonso Bustos ◽  
Antonio Navarro ◽  
Douglas Gould
Keyword(s):  

Author(s):  
Jan A. Tschorn ◽  
Daniel Fuchs ◽  
Thomas Vietor

AbstractThis paper describes an interactive approach for analyzing the impact of the enhanced design freedom in additive manufacturing (AM) combined with topology optimization. The main goal is to identify weight saving potentials on a holistic vehicle level and evaluate the influence on vehicle performance by means of lap time savings. Therefore lightweight use cases enabled by AM are gathered in a database. Projecting the weight reduction rates of this database to a sports car as reference vehicle by means of a weight list, CAD data and a part relation analysis leads to an overall weight saving potential. This analysis shows significant weight saving potentials for each technical section of an already lightweight design focused sports car, namely the Bugatti Chiron. The improvement in track performance considering the weight savings is put into perspective by means of lap time simulation on the Nürburgring Nordschleife and corroborate the identified weight saving potentials.


2021 ◽  
Vol 412 ◽  
pp. 99-106
Author(s):  
A.S. Guimarães ◽  
J.M.P.Q. Delgado ◽  
S.S. Lucas

The main goal of this work is the analysis of the thermal and environmental benefits of 3D printing on building construction. Present literature reports a considerable number of benefits for 3D printing, namely reduction of material use, lower operational costs and time saving. Authors also mention design freedom, higher efficiency, productivity and quality. This work presents the most important advances in 3D printing in civil engineering, specifically, a critical review of the thermal and environmental benefits of 3D printing on building construction. The limitations of construction 3D printing with focus on large-scale applications, technology costs, mix development and optimisation and thermal behaviour will be, also, defined.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012004
Author(s):  
L Knapčíková ◽  
J Husár ◽  
J Kaščak

Abstract The use of composites in engineering applications has been steadily growing in recent years. Despite this growth and despite some important advantages of the properties that composites offer, such as reduced weight, design freedom, etc., a breakthrough in high- volume components in engineering applications has not been achieved at present. Therefore, when designing selected parts and structures using new materials, such as composites, material and manufacturing costs must be considered a high priority if further significant growth is achieved. However, many other factors must also be considered when designing a composite part for engineering use. These factors also depend on the particular material or combination of materials being evaluated. The paper is focused on testing a composite material manufactured from polybutylene terephthalate (PBT), reinforced with high-strength fibres Cordenka and Aramid fibres. The composite material's mechanical properties were verified using Ansys simulation software.


2021 ◽  
pp. 1-47
Author(s):  
Siti Nur Humaira Mazlan ◽  
Aini Zuhra Abdul Kadir ◽  
Mariusz Deja ◽  
Dawid Zielinski ◽  
Mohd Rizal Alkahari

Abstract The design for additive manufacturing (DFAM) processing was introduced to fully utilise the design freedom provided by additive manufacturing (AM). Consequently, appropriate design methodologies have become essential for this technology. Recently, many studies have identified the importance of DFAM method utilisation to produce AM parts, and TRIZ is a strategy used to formalise design methodologies. TRIZ is a problem-solving tool developed to assist designers to find innovative and creative solutions. However, the pathway for synergising TRIZ and DFAM is not clearly explained with respect to AM capabilities and complexities. This is mainly because most methods continue to involve use of the classical TRIZ principle, which was developed early in 1946, 40 years before AM technologies were introduced in the mid-1980s. Therefore, to tackle this issue, this study aims to enhance the 40 principles of classical TRIZ to accommodate AM design principles. A modified TRIZ-AM principle has been developed to define the pathway to AM solutions. TRIZ-AM cards are tools that assist designers to select inventive principles (IPs) in the early phases of product design and development. The case study illustrates that even inexperienced AM users can creatively design innovative AM parts.


Micro ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 164-180
Author(s):  
Ada-Ioana Bunea ◽  
Nuria del Castillo Iniesta ◽  
Ariadni Droumpali ◽  
Alexandre Emmanuel Wetzel ◽  
Einstom Engay ◽  
...  

3D printing by two-photon polymerization enables the fabrication of microstructures with complex shapes and critical dimensions of a few hundreds of nanometers. On state-of-the art commercial two-photon polymerization systems, an immense 3D design freedom can be put into practice by direct laser writing using a precise fabrication technology, which makes this approach highly attractive for different applications on the microscale, such as microrobotics, micro-optics, or biosensing. However, navigating the different possible configurations and selecting the optimal parameters for the fabrication process often requires intensive testing and optimization. In addition to the more established acrylate-based resins, there is a growing interest in the use of soft materials. In this paper, we demonstrate the fabrication of various microscale structures by two-photon polymerization using a Nanoscribe Photonic Professional GT+ commercial system. Furthermore, we describe the different configurations of the system and parameter selection, as well as commercial resins and their chemical and mechanical properties. Finally, we provide a short guide aiming to serve as starting point for the two-photon polymerization-based fabrication of various microscale architectures with distinct characteristics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kai Xiao ◽  
Xiang Zhou ◽  
Jaehyung Ju

AbstractArchitected modular origami structures show potential for future robotic matter owing to their reconfigurability with multiple mobilities. Similar to modular robots, the units of modular origami structures do not need to be assembled in a fully packed fashion; in fact, disconnection can provide more freedom for the design of mobility and functionality. Despite the potential of expanded design freedom, the effect of the disconnection of units on the mobility and physical properties has not yet been explored in modular origami structures. Determining the mobility and weak spots of modular origami structures is significant to enable transformation with minimum energy. Herein, we investigate the effect of the disconnection of units on the mobility and stiffness of architected modular origami structures with deformable units using angular kinematics of geometry and topology of units and closed loops. Angular kinematics provides a valuable tool for investigating the complex mobility of architected modular origami structures with the disconnection of loops. The mobility of the network structure is a function not only of the number of disconnections but also of the topology of the loop. In contrast to the conventional negative perception of defects or disconnection in these materials, the disconnection can potentially be used to expand the design space of mobility for future robotic matter. Our findings can be used to develop powerful design guidelines for topologically reconfigurable structures for soft modular robots, active architected materials, implanted modular devices, deployable structures, thermal metamaterials, and active acoustic metamaterials.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2809
Author(s):  
Kartikeya Walia ◽  
Ahmed Khan ◽  
Philip Breedon

The robotics design process can be complex with potentially multiple design iterations. The use of 3D printing is ideal for rapid prototyping and has conventionally been utilised in concept development and for exploring different design parameters that are ultimately used to meet an intended application or routine. During the initial stage of a robot development, exploiting 3D printing can provide design freedom, customisation and sustainability and ultimately lead to direct cost benefits. Traditionally, robot specifications are selected on the basis of being able to deliver a specific task. However, a robot that can be specified by design parameters linked to a distinctive task can be developed quickly, inexpensively, and with little overall risk utilising a 3D printing process. Numerous factors are inevitably important for the design of industrial robots using polymer-based additive manufacturing. However, with an extensive range of new polymer-based additive manufacturing techniques and materials, these could provide significant benefits for future robotics design and development.


Sign in / Sign up

Export Citation Format

Share Document