A molecular phylogenetic analysis of the genus Donacia (Coleoptera, Chrysomelidae) in Japan, based on mitochondrial gene sequences

2004 ◽  
pp. 105-116
2016 ◽  
Vol 85 (3) ◽  
pp. 337-359 ◽  
Author(s):  
Iva Njunjić ◽  
Michel Perreau ◽  
Kasper Hendriks ◽  
Menno Schilthuizen ◽  
Louis Deharveng

The subtribe Anthroherponina form an iconic group of obligate cave beetles, typical representatives of the Dinaric subterranean fauna, which is considered to be the richest in the world. Phylogenetic studies within this subtribe are scarce and based only on morphological characters, which, due to troglomorphic convergence, are frequently unreliable. Moreover, morphological stasis and morphological polymorphism make classification of taxa difficult. To test if characters that have traditionally been accepted as informative for Anthroherponina classification are indeed reliable, we evaluated the monophyly of the most speciesrich genus of this subtribe - Anthroherpon Reitter, 1889. Our study, based on a molecular phylogenetic analysis of fragments of the 18S, 28S, and COI (both 5’ and 3’ end) loci revealed that the genus Anthroherpon as conventionally defined is polyphyletic. To resolve this polyphyly, we defined one new additional genus, Graciliella n. gen., for which we then examined the intrageneric diversity using molecular and morphometric approaches. Molecular phylogenetic analysis of two COI mitochondrial gene fragments revealed the presence of four species inside Graciliella n. gen., including two new species, which we here describe as G. kosovaci n. sp. and G. ozimeci n. sp. To analyze interspecific morphological differences within Graciliella we performed a discriminant analysis based on 40 linear morphometric measurements. The results showed that differences between species and subspecies inside Graciliella, however subtle they may seem, are measurable and reproducible. All species of the genus are briefly diagnosed, an identification key is proposed and a distribution map of all taxa of Graciliella is provided.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1190
Author(s):  
Yuqi Huang ◽  
Minghao Sun ◽  
Lenan Zhuang ◽  
Jin He

Androgen-inducible genes (AIGs), which can be regulated by androgen level, constitute a group of genes characterized by the presence of the AIG/FAR-17a domain in its protein sequence. Previous studies on AIGs demonstrated that one member of the gene family, AIG1, is involved in many biological processes in cancer cell lines and that ADTRP is associated with cardiovascular diseases. It has been shown that the numbers of AIG paralogs in humans, mice, and zebrafish are 2, 2, and 3, respectively, indicating possible gene duplication events during vertebrate evolution. Therefore, classifying subgroups of AIGs and identifying the homologs of each AIG member are important to characterize this novel gene family further. In this study, vertebrate AIGs were phylogenetically grouped into three major clades, ADTRP, AIG1, and AIG-L, with AIG-L also evident in an outgroup consisting of invertebrsate species. In this case, AIG-L, as the ancestral AIG, gave rise to ADTRP and AIG1 after two rounds of whole-genome duplications during vertebrate evolution. Then, the AIG family, which was exposed to purifying forces during evolution, lost or gained some of its members in some species. For example, in eutherians, Neognathae, and Percomorphaceae, AIG-L was lost; in contrast, Salmonidae and Cyprinidae acquired additional AIG copies. In conclusion, this study provides a comprehensive molecular phylogenetic analysis of vertebrate AIGs, which can be employed for future functional characterization of AIGs.


2010 ◽  
Vol 28 (2) ◽  
pp. 323-328 ◽  
Author(s):  
Xianghai Tang ◽  
Rencheng Yu ◽  
Qingchun Zhang ◽  
Yunfeng Wang ◽  
Tian Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document