scholarly journals The cave beetle genus Anthroherpon is polyphyletic; molecular phylogenetics and description of Graciliella n. gen. (Leiodidae, Leptodirini)

2016 ◽  
Vol 85 (3) ◽  
pp. 337-359 ◽  
Author(s):  
Iva Njunjić ◽  
Michel Perreau ◽  
Kasper Hendriks ◽  
Menno Schilthuizen ◽  
Louis Deharveng

The subtribe Anthroherponina form an iconic group of obligate cave beetles, typical representatives of the Dinaric subterranean fauna, which is considered to be the richest in the world. Phylogenetic studies within this subtribe are scarce and based only on morphological characters, which, due to troglomorphic convergence, are frequently unreliable. Moreover, morphological stasis and morphological polymorphism make classification of taxa difficult. To test if characters that have traditionally been accepted as informative for Anthroherponina classification are indeed reliable, we evaluated the monophyly of the most speciesrich genus of this subtribe - Anthroherpon Reitter, 1889. Our study, based on a molecular phylogenetic analysis of fragments of the 18S, 28S, and COI (both 5’ and 3’ end) loci revealed that the genus Anthroherpon as conventionally defined is polyphyletic. To resolve this polyphyly, we defined one new additional genus, Graciliella n. gen., for which we then examined the intrageneric diversity using molecular and morphometric approaches. Molecular phylogenetic analysis of two COI mitochondrial gene fragments revealed the presence of four species inside Graciliella n. gen., including two new species, which we here describe as G. kosovaci n. sp. and G. ozimeci n. sp. To analyze interspecific morphological differences within Graciliella we performed a discriminant analysis based on 40 linear morphometric measurements. The results showed that differences between species and subspecies inside Graciliella, however subtle they may seem, are measurable and reproducible. All species of the genus are briefly diagnosed, an identification key is proposed and a distribution map of all taxa of Graciliella is provided.

Phytotaxa ◽  
2018 ◽  
Vol 350 (1) ◽  
pp. 1
Author(s):  
RUI-HONG WANG ◽  
MAO-QIN XIA ◽  
JIN-BO TAN ◽  
CHUAN CHEN ◽  
XIN-JIE JIN ◽  
...  

A new species, Scrophularia jinii (Scrophulariaceae), from Central China is described and illustrated. This new species was formerly misidentified as S. fargesii, from which it differs in many morphological characters. Moreover, it is distinct with all known Scrophularia species in its unique deeply double serrate leaf margin with 3–7 big teeth on each side. Molecular phylogenetic analysis further supports its species delimitation and suggests a close relationship with several Japanese and North American species.


2021 ◽  
Vol 773 ◽  
pp. 19-60
Author(s):  
Yuri I. Kantor ◽  
Nicolas Puillandre

The genus Sibogasyrinx has to date included only four species of rare deep-water Conoidea, each known from few specimens. In shell characters it strongly resembles three distantly-related genera, two of which, Comitas and Leucosyrinx, belong to a different family, the Pseudomelatomidae. A molecular phylogenetic analysis of a large amount of material of Conoidea has revealed the existence of much additional undescribed diversity within Sibogasyrinx from the central Indo-Pacific and temperate Northern Pacific. Based on partial sequences of the mitochondrial cox1 gene and morphological characters of 54 specimens, 10 species hypotheses are proposed, of which six are described as new species: S. subula sp. nov., S. lolae sp. nov., S. maximei sp. nov., S. clausura sp. nov., S. pagodiformis sp. nov. and S. elbakyanae Kantor, Puillandre & Bouchet sp. nov. One of the previously described species was absent in our material. Most of the new species are very similar and are compared to Leucosyrinx spp. Species of Sibogasyrinx are unique among Conoidea on account of the high intrageneric variability in radular morphology. Three distinct radula types are found within Sibogasyrinx, two of which are confined to highly supported subclades.


Phytotaxa ◽  
2014 ◽  
Vol 181 (3) ◽  
pp. 151 ◽  
Author(s):  
Yuya Inoue ◽  
Hiromi Tsubota

Based on our molecular phylogenetic analysis of haplolepideous mosses with concatenated sequences of chloroplast rps4 and rbcL genes, a new family Timmiellaceae is erected to accommodate the genera Timmiella and Luisierella, both of which have been formerly included in the family Pottiaceae.  The family Timmiellaceae is resolved as a second-branching clade together with Distichium (Distichiaceae) within the Dicranidae (haplolepideous moss) lineages and phylogenetically distinct from the Pottiaceae.  Reassessment of morphological characters suggests that a combination of the characters: 1) adaxially bulging and abaxially flat leaf surfaces, 2) sinistrorse or straight peristomes, when present, and 3) sinistrorsely arranged operculum cells is unique to Timmiellaceae and discriminates it from other haplolepideous moss families.


2019 ◽  
Author(s):  
Natalia Tkach ◽  
Julia Schneider ◽  
Elke Döring ◽  
Alexandra Wölk ◽  
Anne Hochbach ◽  
...  

ABSTRACTTo investigate the evolutionary diversification and morphological evolution of grass supertribe Poodae (subfam. Pooideae, Poaceae) we conducted a comprehensive molecular phylogenetic analysis including representatives from most of their accepted genera. We focused on generating a DNA sequence dataset of plastid matK gene–3’trnK exon and trnL– trnF regions and nuclear ribosomal ITS1–5.8S gene–ITS2 and ETS that was taxonomically overlapping as completely as possible (altogether 257 species). The idea was to infer whether phylogenetic trees or certain clades based on plastid and nuclear DNA data correspond with each other or discord, revealing signatures of past hybridization. The datasets were analysed using maximum parsimony, maximum likelihood and Bayesian approaches. Instances of severe conflicts between the phylogenetic trees derived from both datasets, some of which have been noted earlier, unambiguously point to hybrid origin of several lineages (subtribes, groups of genera, sometimes genera) such as Phalaridinae, Scolochloinae, Sesleriinae, Torreyochloinae; Arctopoa, Castellia, Graphephorum, Hyalopodium, Lagurus, Macrobriza, Puccinellia plus Sclerochloa, Sesleria, Tricholemma, American Trisetum, etc. and presumably Airinae, Holcinae and Phleinae. ‘Calamagrostis’ flavens appears to be an intergeneric hybrid between Agrostis and Calamagrostis. Most frequently there is good agreement of other regions of the trees, apart from intrinsic different phylogenetic resolution of the respective DNA markers. To explore the to date rather unclear morphological evolution of our study group a data matrix encompassing finally 188 characters was analysed for ancestral state reconstructions (ASR) using the tree from the combined molecular dataset as presumably best approximation to the species phylogeny. For 74 characters ASRs were feasible and yielded partly surprising results for the study group as a whole but also for some of their subdivisions. Considering taxonomy and classification it became evident, that many morphological characters show a very high degree of homoplasy and are seemingly able to change within comparatively short timespans in the evolution of our grasses. Most of the taxonomic units distinguished within our study group, e.g. as subtribes, are defined less by consistent morphological characters or character combinations and should be rather understood as clades revealed by molecular phylogenetic analysis. One reason for this extreme homoplasy concerning traditionally highly rated characters of inflorescences or spikelets and their components might be that they have little to do with pollination (always wind) or adaptation to pollinators as in other angiosperms but rather with dispersal and diaspores. Easily changing structure of spikelet disarticulation, of glume, lemma or awn characters might be advantageous in the rapid adaptation to different habitats and micro-habitats, which was evidently most successfully accomplished by these grasses. A partly revised classification of Poodae is presented, including a re-instatement of tribes Aveneae and Poeae s.str. Following a comparatively narrow delineation of preferably monophyletic subtribes, Antinoriinae, Avenulinae, Brizochloinae, Helictochloinae, Hypseochloinae are described as new. New genera are Arctohyalopoa and Hyalopodium. New combinations are Arctohyalopoa lanatiflora, A. lanatiflora subsp. ivanoviae, A. lanatiflora subsp. momica, Colpodium biebersteinianum, C. kochii, C. trichopodum, C. verticillatum, Deschampsia micrathera, Dupontia fulva, Festuca masafuerana, Hyalopodium araraticum, Paracolpodium baltistanicum, Parapholis cylindrica, P. ×pauneroi. Festuca masatierrae is a new name.Supporting Information may be found online in the Supporting Information section at the end of the article.


Parasite ◽  
2019 ◽  
Vol 26 ◽  
pp. 47
Author(s):  
Pichit Wiroonpan ◽  
Watchariya Purivirojkul

Trichodinids, which are ciliate protists, are causative agents of an aquatic animal disease, trichodiniasis, especially among both captive and wild fish. This disease can adversely affect aquaculture and have economic impacts. The objectives of this study were to evaluate the prevalence and mean intensity of Trichodina unionis infection, describe qualitative and quantitative morphological characters, and perform a molecular phylogenetic analysis. The gastropod samples were randomly collected by hand-picking and a hand net. Trichodina unionis was collected by the crushing method under a stereomicroscope. Among all 4977 examined gastropods, 55 individuals of two gastropod species, Gyraulus siamensis and Physella acuta, were found to be infected by T. unionis, with overall prevalence and mean intensity of infection of 1.11% and 16.65, respectively. The characteristics of the denticles indicated T. unionis as having moderately wide blades and moderately curved blade margins, with distinctive bend angles near the distal end. The quantitative characters showed some variations, which could be due to food availability. Molecular phylogenetic analysis conducted with 18S rRNA provided a monophyletic tree of our specimens and previously identified T. unionis, confirming species identification. This study represents the first record of T. unionis in Thailand.


Zootaxa ◽  
2019 ◽  
Vol 4571 (1) ◽  
pp. 99
Author(s):  
HONGXIANG HAN ◽  
PEDER SKOU ◽  
RUI CHENG

Neochloroglyphica gen. nov. and its type species N. perbella sp. nov. are described from Yunnan, China. Morphological characters and molecular phylogenetic analysis, based on one mitochondrial and three nuclear genes, support the hypothesis that Neochloroglyphica is a member of the tribe Neohipparchini, and that it is a sister genus to Chloroglyphica. Morphological characters, including those of the genitalia, are figured and compared with related genera, especially Chloroglyphica, Neohipparchus and Chlororithra. Diagnoses for the genus and the species are provided and illustrations of external features and genitalia are presented. 


Phytotaxa ◽  
2021 ◽  
Vol 498 (2) ◽  
pp. 131-138
Author(s):  
JING ZHOU ◽  
JIN WEI ◽  
JUNMEI NIU ◽  
XIAOLI LIU ◽  
ZHENWEN LIU

The genus Pterocyclus Klotzsch, along with many others, constituted the taxonomically complex Pleurospermum s.l. To delimit its circumscription and clarify its interspecific relationships, molecular phylogenetic analysis and detailed specimen examination were carried out. Its status as an independent genus was confirmed, with four species recognized. Pterocyclus wolffianus, the synonymous species of Pterocyclus forrsetii should be restored as an independent species. A new taxonomic account for Pterocyclus and an identification key to its four species, are provided.


Phytotaxa ◽  
2018 ◽  
Vol 348 (4) ◽  
pp. 279 ◽  
Author(s):  
ZIA ULLAH ◽  
SANA JABEEN ◽  
HABIB AHMAD ◽  
ABDUL NASIR KHALID

Inocybe pakistanensis is described and illustrated as a new species based on morphological characters and molecular phylogenetic analysis of nuclear ribosomal DNA including the internal transcribed spacer (ITS) regions along with larger subunit (LSU). The distinctive basidiomata have a highly rimose and fibrillose golden brown pileus with a reddish brown, prominent umbo; ellipsoid to amygdaliform, slightly phasoeliform smooth basidiospores; and clamped septa in all the tissues. Molecular phylogenetic analysis supports the placement of I. pakistanensis in section Rimosae s. str.


Zootaxa ◽  
2009 ◽  
Vol 2174 (1) ◽  
pp. 51-62 ◽  
Author(s):  
P. A. DINGHI ◽  
V. CONFALONIERI ◽  
M. M. CIGLIANO

The Dichroplini genera Scotussa, Leiotettix, Ronderosia, Atrachelacris, Chlorus, Eurotettix and Dichromatos have been grouped into the “Paranaense-Pampeano” informal genus group, based on characters of the male genitalia. However, recent molecular phylogenetic analyses showed weak support values or no support at all for this group. In this study, we used molecular and morphological characters to test the monophyly of this informal genus group. Morphological characters included aspects of the general morphology, and male and female genitalia as well. Whereas the molecular data was based on one mitochondrial gene: cytochrome oxidase I. Independent and combined phylogenetic analyses of the data were performed under both unweighted and implied weighting parsimony. Our results showed that, when only molecular data is considered, the “Paranaense-Pampeano” informal genus group is not recovered. However, the group is monophyletic according to morphological and combined analyses. The “Paranaense-Pampeano” informal genus group is considered to be a natural clade; therefore, we propose the genus group name Scotussae. As a final remark, the molecular data provided in most cases the same evidence of relationships as morphology.


Sign in / Sign up

Export Citation Format

Share Document