The EH-Induced Mouse Model of Pulmonary Arterial Hypertension Recapitulates Gender Differences of Human Disease

Author(s):  
S.A. Predescu ◽  
B. Carman ◽  
S. Qin ◽  
D.N. Predescu
Author(s):  
◽  
Eptisam lambu

Pulmonary arterial hypertension (PAH) is a rare multifactorial disease characterized by abnormal high blood pressure in the pulmonary artery, or increased pulmonary vascular resistance (PVR), caused by obstruction in the small arteries of the lung. Increased PVR is also thought to be caused by abnormal vascular remodeling, due to thickening of the pulmonary vascular wall resulting from significant hypertrophy of pulmonary arterial smooth-muscle cells (PASMCs) and increased proliferation/impaired apoptosis of pulmonary arterial endothelial cells (PAECs). Herein, we investigated the mechanisms and explored molecular pathways mediating the lung pathogenesis in two PAH rat models: Monocrotaline (MCT) and Sugen5416/Hypoxia (SuHx). We analyzed these disease models to determine where the vasculature shows the most severe PAH pathology and which model best recapitulates the human disease. We investigated the role vascular remodeling, hypoxia, cell proliferation, apoptosis, DNA damage and inflammation play in the pathogenesis of PAH. Neither model recapitulated all features of the human disease, however each model presented with some of the pathology seen in PAH patients.


2007 ◽  
Vol 293 (3) ◽  
pp. L583-L590 ◽  
Author(s):  
R. James White ◽  
David F. Meoli ◽  
Robert F. Swarthout ◽  
Dara Y. Kallop ◽  
Irfan I. Galaria ◽  
...  

Severe pulmonary arterial hypertension (PAH) occurs in idiopathic form and in association with diverse diseases. The pathological hallmarks are distal smooth muscle hypertrophy, obliteration of small pulmonary arteriole lumens, and disorganized cellular proliferation in plexiform lesions. In situ thrombosis is also observed. A detailed understanding of the disease progression has been hampered by the absence of an animal model bearing all the pathological features of human disease. To create a model with these characteristics, we gave young (200-g) rats monocrotaline 1 wk following left pneumonectomy; controls with vehicle treatment or sham operation were also studied. In experimental rats, pulmonary arteries had distal smooth muscle hypertrophy and proliferative perivascular lesions. The lesions had a plexiform appearance, occurred early in disease development, and were composed of cells expressing endothelial antigens. Three-dimensional microangiography revealed severe vascular pruning and disorganized vascular networks. We found that expression of tissue factor (TF), the membrane glycoprotein that initiates coagulation, facilitates angiogenesis, and mediates arterial injury in the systemic circulation, was increased in the pulmonary arterioles and plexiform-like lesions of the rats. TF was also heavily expressed in the vessels and plexiform lesions of humans with pulmonary arterial hypertension. We conclude that plexiform-like lesions can be reproduced in rats, and this model will facilitate experiments to address controversies about the role of these lesions in PAH. Increased TF expression may contribute to the prothrombotic diathesis and vascular cell proliferation typical of human disease.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaoyue Ge ◽  
Tiantian Zhu ◽  
Xinyi Zhang ◽  
Ye Liu ◽  
Yonglong Wang ◽  
...  

Author(s):  
Zhijie Wang ◽  
Jitandrakumar R. Patel ◽  
David A. Schreier ◽  
Richard Moss ◽  
Timothy A. Hacker ◽  
...  

Pulmonary arterial hypertension (PAH) is the most severe form of pulmonary hypertension due to its rapid progression to right ventricular (RV) failure. Until the recent combination of chronic hypoxia with VEGF receptor blockage by SU5416 [1], there was no mouse model for severe PAH. This new model (HySu) recapitulates hallmarks of human PAH, especially distal arteriolar neointima formation and obliteration [1]. However, the changes in RV function in this model have not been examined. Here we investigate the hypothesis that the HySu mouse model mimics the progression of RV dysfunction found in PAH clinically from compensatory to maladaptive RV remodeling.


Author(s):  
Dan Yi ◽  
Bin Liu ◽  
Ting Wang ◽  
Qi Liao ◽  
Maggie M. Zhu ◽  
...  

Endothelial autocrine signaling is essential to maintain vascular hemostasis. There is limited in-formation about the role of endothelial autocrine signaling in regulating severe pulmonary vas-cular remodeling during the onset of pulmonary arterial hypertension (PAH). In this study, we employed the first severe PAH mouse model, Egln1Tie2Cre (Tie2Cre-mediated disruption of Egln1) mice, to identify the novel autocrine signaling mediating the pulmonary vascular endothelial cells (PVECs) hyperproliferation and the pathogenesis of PAH. PVECs isolated from Egln1Tie2Cre lung expressed upregulation of many growth factors or angiocrine factors such as CXCL12, and exhib-ited hyperproliferative phenotype in coincident with upregulation of proliferation specific tran-scriptional factor FoxM1. Treatment of CXCL12 on PVECs increased FoxM1 expression, which was blocked by CXCL12 receptor CXCR4 antagonist AMD3100 in culture human PVECs. Endo-thelial specific deletion of Cxcl12 (Egln1/Cxcl12Tie2 Cre) or AMD3100 treatment in Egln1Tie2Cre mice downregulated FoxM1 expression in vivo. We then generated and characterized a novel mouse model with endothelial specific FoxM1 deletion in Egln1Tie2Cre mice (Egln1/Foxm1Tie2Cre), and found that endothelial FoxM1 deletion reduced pulmonary vascular remodeling and right ventricular systolic pressure. Together, our study identified a novel mechanism of endothelial autocrine sig-naling in regulating PVECs hyperproliferation and pulmonary vascular remodeling in PAH.


Sign in / Sign up

Export Citation Format

Share Document