sham operation
Recently Published Documents


TOTAL DOCUMENTS

1001
(FIVE YEARS 305)

H-INDEX

53
(FIVE YEARS 5)

Author(s):  
Na Yuan ◽  
Xiuzhen Wang ◽  
Yu Zhang ◽  
Lingsi Kong ◽  
Liyong Yuan ◽  
...  

Background: The Postoperative cognitive dysfunction (POCD) model was constructed by resection of the left hepatic lobe in aged mice to determine the behavioral effects of the POCD model in aged mice and the relationship between NF-κB and POCD in apoptosis and autophagy. Provide a theoretical basis for POCD prevention and treatment. Methods: This study was carried out in Ningbo No. 6 Hospital, Zhejiang, China, from Jun 2019 to Dec 2020. The POCD model was constructed after resection of the left extrahepatic lobe in aged mice and randomly divided into 6 groups: sham operation group, operation group (normal saline control group, solvent group, YC-1 group, PDTC group and 3-MA group). Related indicators of behavioral changes, neuronal inflammatory responses, apoptosis, and autophagy were examined. Results: The escape latency of the aged mice in the surgical group was significantly prolonged at three time points compared with the control group, and the number of insertions decreased significantly. Microglia are activated and the inflammatory response is increased, whereas PDTC has an inhibitory effect. It was demonstrated that apoptosis and necrosis of neurons can be induced by the NF-κb pathway, and autophagy can be promoted, whereas autophagy occurs before apoptosis. Conclusion: Activation of NF-κb pathway in neurons after POCD causes neuronal apoptosis and autophagy, and cognitive impairment occurs. PDTC, a NF-κb pathway inhibitor, can effectively reduce neuronal apoptosis induced by secondary brain injury after POCD. Necrosis, to protect the brain tissue.  


2022 ◽  
Vol 32 (1) ◽  
Author(s):  
Chengren Gou ◽  
Tong Liu ◽  
Zongping Chen ◽  
Zidong Zhou ◽  
Tao Song ◽  
...  

Abstract Background The ischiocavernosus muscle (ICM) encompasses a pair of short pinnate muscles attached to the pelvic ring. The ICM begins at the ischial tuberosity and ends at the crus of the penis while covering the surface of the crus. According to the traditional view, the contraction of the ICM plays an auxiliary role in penile erection. However, we have previously shown that the ICM plays an important role in penile erection through an indirect method of diagnosing erectile dysfunction (ED) caused by ICM injury by observing the infertility of paired female rats. Since intracavernosal pressure (ICP) is the current gold standard for diagnosing ED, this study aimed to amputate unilaterally/bilaterally the ICM to establish an ED model by detecting the ICP, recording the infertility of matching female rats, and comparing the two methods. Results Forty sexually mature adult male rats were selected and randomly divided into the following groups: the control group (n = 10), sham operation group (n = 10), unilateral ischiocavernosus muscle (Uni-ICM) amputation group (n = 10), and bilateral ischiocavernosus muscle (Bi-ICM) amputation group (n = 10). Eighty female reproductive rats were randomly assigned to the above groups at a ratio of 2:1. We evaluated the time to conception for the paired female rats and the effects of unilateral/bilateral severing of the ICM on erectile function. The results showed that the baseline and maximum intracavernosal pressure (ICP) in the control group, sham operation group, Uni-ICM amputation group, and Bi-ICM amputation group were 17.44±2.50 mmHg and 93.51±10.78 mmHg, 17.81±2.81 mmHg and 95.07±10.40 mmHg, 16.73±2.11 mmHg and 83.49±12.38 mmHg, and 14.78±2.78 mmHg and 33.57±6.72 mmHg, respectively, immediately postsurgery. The max ICP in the Bi-ICM amputation group was lower than that in the remaining three groups (all P<0.05). The pregnancy rates were 100, 100, 90, and 0% in the control group, sham operation group, Uni-ICM amputation group, and the Bi-ICM amputation group, respectively. The pregnancy rate in the Bi-ICM amputation group was significantly lower than that in the remaining groups (all P<0.05). The time to conception was approximately 7–10 days later in the Uni-ICM amputation group than in the control and sham groups (all P<0.05). Conclusions Male rats undergoing Bi-ICM amputation may develop permanent ED, which affects their fertility. In contrast, rats undergoing Uni-ICM amputation may experience transient ED.


2022 ◽  
Author(s):  
Fabian Schadt ◽  
Ina Israel ◽  
Alexandra Beez ◽  
Kastriot Alushi ◽  
Judith Weiland ◽  
...  

Abstract Little is known about changes in brain metabolism following SAH, possibly leading towards secondary brain damage. Despite sustained progress in the last decade, analysis of in vivo acquired data still remains challenging. The present interdisciplinary study uses a semi-automated data analysis tool analyzing imaging data independently from the administrated radiotracer. The uptake of 2-[18F]Fluoro-2-deoxy-glucose ([18F]FDG) was evaluated in different brain regions in 14 male Sprague-Dawley rats, randomized into two groups: (1) SAH induced by the endovascular filament model and (2) sham operated controls. Serial [18F]FDG-PET measurements were performed. Quantitative image analysis was performed by uptake ratio using a self-developed MRI-template based data analysis tool. SAH animals showed significantly higher [18F]FDG accumulation in gray matter, neocortex and olfactory system as compared to animals of the sham group, while white matter and basal forebrain region showed significant reduced tracer accumulation in SAH animals. All significant metabolic changes were visualized from 3 hours, over 24 hours, day 4 and day 7 following SAH/sham operation. This [18F]FDG-PET study provides important insights into glucose metabolism alterations following SAH - for the first time in different brain regions and up to day 7 during course of disease. The present tool improves PET image quantification and provides more flexible data analysis advocating its clinical application.


2022 ◽  
Vol 2022 ◽  
pp. 1-21
Author(s):  
Guozuo Wang ◽  
Xiaomei Zeng ◽  
Shengqiang Gong ◽  
Shanshan Wang ◽  
Anqi Ge ◽  
...  

Objective. To explore the mechanism of edaravone in the treatment of oxidative stress in rats with cerebral infarction based on quantitative proteomics technology. Method. The modified Zea Longa intracavitary suture blocking method was utilized to make rat CI model. After modeling, the rat was intragastrically given edaravone for 7 days, once a day. After the 7-day intervention, the total proteins of serum were extracted. After proteomics analysis, the differentially expressed proteins are analyzed by bioinformatics. Then chemoinformatics methods were used to explore the biomolecular network of edaravone intervention in CI. Result. The neurological scores and pathological changes of rats were improved after the intervention of edaravone. Proteomics analysis showed that in the model/sham operation group, 90 proteins in comparison group were upregulated, and 26 proteins were downregulated. In the edaravone/model group, 21 proteins were upregulated, and 41 proteins were downregulated. Bioinformatics analysis and chemoinformatics analysis also show that edaravone is related to platelet activation and aggregation, oxidative stress, intercellular adhesion, glycolysis and gluconeogenesis, iron metabolism, hypoxia, inflammatory chemokines, their mediated signal transduction, and so on. Conclusion. The therapeutic mechanism of edaravone in the treatment of CI may involve platelet activation and aggregation, oxidative stress, intercellular adhesion, glycolysis and gluconeogenesis, iron metabolism, hypoxia, and so on. This study revealed the serum protein profile of edaravone in the treatment of cerebral infarction rats through serum TMT proteomics and discovered the relevant mechanism of edaravone regulating iron metabolism in cerebral infarction, which provides new ideas for the study of edaravone intervention in cerebral infarction and also provides reference information for future research on the mechanism of edaravone intervention in iron metabolism-related diseases.


2022 ◽  
Vol 12 (1) ◽  
pp. 19-27
Author(s):  
Xiaocheng Jiang ◽  
Yuxiang Ren ◽  
Xintao Zhang ◽  
Tian You ◽  
Shiyou Ren ◽  
...  

This study was aim to investigate the effect of type 1 collagen (Col I) bioactive scaffold on regeneration and repair of motor cartilage injury. Fifteen New Zealand rabbits were randomly divided into sham operation group (Sham group, only cartilage was exposed, no defect was made), model group Focal cortical dysplasias (FCD) group, cartilage defect model], and treatment group (Col I group, cartilage defect + Col I bioactive scaffold treatment). The cartilage tissue of each group was detected 16 weeks after the operation. Immunohistochemistry and Western Blot were adopted to detect the expression of cartilage related proteins in each group. The results showed that Col I bioactive scaffold could repair the gross morphology of cartilage defect, promote the regeneration and repair of chondrocytes in defect area, and reduce the mast cells in defect area. Western Blot detection of the expression of signal pathway marker proteins showed that expression of Wnt protein, β-catenin protein, and phosphofructokinase-1 (PFK-1) protein in the FCD group were significantly reduced than Sham group (P < 0.05), while the expression of phosphoenolpyruvate carboxykinase 1 (PEPCK1) protein was significantly increased (P < 0.05). Expression of Wnt protein, β-catenin protein, and PFK-1 protein in Col I group increased significantly versus FCD group (P < 0.05), while the expression of PEPCK1 protein significantly decreased (P < 0.05). In conclusion, Col I bioactive scaffolds could regenerate and repair cartilage defects, and the mechanism may be related to Wnt signaling pathway and glycolysis/gluconeogenesis pathway.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 116
Author(s):  
Ulrich Dischinger ◽  
Tobias Heckel ◽  
Thorsten Bischler ◽  
Julia Hasinger ◽  
Malina Königsrainer ◽  
...  

Background: The hypothalamus is an important brain region for the regulation of energy balance. Roux-en-Y gastric bypass (RYGB) surgery and gut hormone-based treatments are known to reduce body weight, but their effects on hypothalamic gene expression and signaling pathways are poorly studied. Methods: Diet-induced obese male Wistar rats were randomized into the following groups: RYGB, sham operation, sham + body weight-matched (BWM) to the RYGB group, osmotic minipump delivering PYY3-36 (0.1 mg/kg/day), liraglutide s.c. (0.4 mg/kg/day), PYY3-36 + liraglutide, and saline. All groups (except BWM) were kept on a free choice of high- and low-fat diets. Four weeks after interventions, hypothalami were collected for RNA sequencing. Results: While rats in the RYGB, BWM, and PYY3-36 + liraglutide groups had comparable reductions in body weight, only RYGB and BWM treatment had a major impact on hypothalamic gene expression. In these groups, hypothalamic leptin receptor expression as well as the JAK–STAT, PI3K-Akt, and AMPK signaling pathways were upregulated. No significant changes could be detected in PYY3-36 + liraglutide-, liraglutide-, and PYY-treated groups. Conclusions: Despite causing similar body weight changes compared to RYGB and BWM, PYY3-36 + liraglutide treatment does not impact hypothalamic gene expression. Whether this striking difference is favorable or unfavorable to metabolic health in the long term requires further investigation.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhenzhen Zhong ◽  
Ping Xu ◽  
Jun Wen ◽  
Xiangdong Li ◽  
Xiaobo Zhang

Objective. The aim was to investigate the role that enriched environment (EE) plays in the regulation of inflammation in cerebral infarction (CI) lesions and further explore the relationship between this regulation and dendritic cells (DCs). Methods. 72 Sprague-Dawley rats were randomly divided into sham operation group (CON group, n = 24 ) and CI model group ( n = 48 ). On completion of the establishment of CI rat models by Longa’s method, rats in the models group were further assigned to standard environment group (NC group, n = 24 ) and EE group ( n = 24 ). HE staining was utilized for evaluation of neuronal injury in the lesions. The number of CD74- and integrin αE-positive cells was detected by immunofluorescence. The expression of the IL-1β, IL-6, and TNF-α in the brain tissue and serum of rats was measured by immunohistochemistry and ELISA, respectively. Results. In comparison with the CON group, the NC and EE groups showed significant increases in neuronal injury, CD74- and Integrin αE-positive cells, DC content, as well as IL-1β, IL-6, and TNF-α expression in brain tissue and serum. According to the further comparison between the NC group and EE group, the latter showed decreases in each indicator, and these decreases were in a time-dependent manner. Conclusion. EE avoids the accumulation of DCs in the lesions and reduces the contents of IL-1β, IL-6, and TNF-α, consequently promoting the recovery of CI. And better recovery results can be obtained through increasing the time to stay in EE.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1946
Author(s):  
Ying Wang ◽  
Pedro Andrade ◽  
Asla Pitkänen

Peripheral infections occur in up to 28% of patients with traumatic brain injury (TBI), which is a major etiology for structural epilepsies. We hypothesized that infection occurring after TBI acts as a “second hit” and facilitates post-traumatic epileptogenesis. Adult male Sprague–Dawley rats were subjected to lateral fluid-percussion injury or sham-operation. At 8 weeks post-injury, rats were treated with lipopolysaccharide (LPS, 5 mg/kg) to mimic Gram-negative peripheral infection. T2-weighted magnetic resonance imaging was used to detect the cortical lesion type (small focal inflammatory [TBIFI] vs. large cavity-forming [TBICF]). Spontaneous seizures were detected with video-electroencephalography, and seizure susceptibility was determined by the pentylenetetrazole (PTZ) test. Post-PTZ neuronal activation was assessed using c-Fos immunohistochemistry. LPS treatment increased the percentage of rats with PTZ-induced seizures among animals with TBIFI lesions (p < 0.05). It also increased the cumulative duration of PTZ-induced seizures (p < 0.01), particularly in the TBIFI group (p < 0.05). The number of c-Fos immunopositive cells was higher in the perilesional cortex of injured animals compared with sham-operated animals (p < 0.05), particularly in the TBI-LPS group (p < 0.05). LPS treatment increased the percentage of injured rats with bilateral c-Fos staining in the dentate gyrus (p < 0.05), particularly in the TBIFI group (p < 0.05). Our findings demonstrate that peripheral infection after TBI increases PTZ-induced seizure susceptibility and neuronal activation in the perilesional cortex and bilaterally in the dentate gyrus, particularly in animals with prolonged perilesional T2 enhancement. Our data suggest that treatment of infections and reduction of post-injury neuro-inflammation are important components of the treatment regimen aiming at preventing epileptogenesis after TBI.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1430
Author(s):  
Kristin Klaeske ◽  
Maria Dix ◽  
Volker Adams ◽  
Khalil Jawad ◽  
Sandra Eifert ◽  
...  

The pathological changes of ubiquitination and deubiquitination following myocardial infarction (MI) and chronic heart failure (CHF) have been sparsely examined. We investigated the expression of muscle-specific E3 ubiquitin ligases and deubiquitinases in MI and CHF. Therefore, mice were assigned to coronary artery ligation for 3 days or 10 weeks as well as for sham operation (each n = 10). Expression of E3 ligases (MAFBX, MURF1, CHIP, ITCH, MDM2) and deubiquitinases (A20, CYLD, UCH-L1, USP14, USP19) was determined. After MI and in CHF, the mRNA expression of MURF1, CHIP and MDM2 (all p < 0.05) was decreased. Protein expression analyses revealed that ITCH expression decreased in CHF (p = 0.01), whereas MDM2 expression increased in MI (p = 0.02) and decreased in CHF (p = 0.02). Except for USP19 mRNA expression that decreased at 3 days and 10 weeks (both p < 0.01), the expression of other deubiquitinases remained unaffected after MI and CHF. The expression of myocardial E3 ligases is differentially regulated following MI, raising the question of whether an upstream regulation exists that is activated by MI for tissue protection or whether the downregulation of E3 ligases enables myocardial hypertrophy following MI.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jiawen Zhang ◽  
Hao Jiang ◽  
Fang Wu ◽  
Xiaofei Chi ◽  
Yu Pang ◽  
...  

This study aimed to explore the influence of hesperidin on the polarization of microglia to clarify the key mechanism of regulating the polarization of M2 microglia. C57BL/6 mice were randomly divided into middle cerebral artery occlusion model group (MCAO group), MCAO + hesperidin treatment group (MCAO + hesperidin group), and sham group (sham operation group). The mice were assessed with neurological scores for their functional status. 2,3,5-Triphenyltetrazole chloride (TTC) was used to determine the volume of cerebral infarction. Hematoxylin and eosin (H&E) staining was performed to detect brain loss. The system with 1% O2, 5% CO2, and 92% N2 was applied to establish BV2 in vitro model induced by MCAO. TNF-α, IL-1β, TGF-β, and IL-10 levels of cytokines in the supernatant were detected by ELISA. RT-qPCR was used to detect mRNA levels of M1 iNOS, CD11b, CD32, and CD86, and mRNA levels of M2 CD206, Arg-1, and TGF-β. The Iba-1, iNOS, and Arg-1 of microglia and protein levels of TLR4 and p-NF-κB related to the pathway were detected by Western blot. After treatment with hesperidin, BV2 cells induced by MCAO in vitro can reduce the proinflammatory cytokines of TNF-α and IL-1β significantly, further upregulating anti-inflammatory cytokines of TGF-β, IL-10 while inhibiting TLR4 and p-NF-κB expression. The MCAO-induced BV2 cells treated by TLR-4 inhibitor TAK-242 and NF-κB inhibitor BAY 11-7082 had similar polarization effects to those treated with hesperidin. This study found that hesperetin gavage treatment can improve the neurological deficit and regulate the polarization of microglia in MCAO mice. In vitro experiments further verified that hesperidin plays a neuroprotective role by inhibiting the TLR4-NF-κB pathway, thus providing new targets and strategies for neuroprotection and nerve repair after ischemic stroke.


Sign in / Sign up

Export Citation Format

Share Document