severe form
Recently Published Documents





2022 ◽  
Vol 81 ◽  
pp. 100880
Sarah Basin ◽  
Simon Valentin ◽  
Arnaud Maurac ◽  
Mathias Poussel ◽  
Benjamin Pequignot ◽  

2022 ◽  
pp. 153537022110669
Hassan Ahmed ◽  
Urooj Amin ◽  
Xiaolun Sun ◽  
Demetrius R Pitts ◽  
Yunbo Li ◽  

Lipopolysaccharide (LPS), also known as endotoxin, can trigger septic shock, a severe form of inflammation-mediated sepsis with a very high mortality rate. However, the precise mechanisms underlying this endotoxin remain to be defined and detoxification of LPS is yet to be established. Macrophages, a type of immune cells, initiate a key response responsible for the cascade of events leading to the surge in inflammatory cytokines and immunopathology of septic shock. This study was undertaken to determine whether the LPS-induced inflammation in macrophage cells could be ameliorated via CDDO-IM (2-cyano-3,12 dioxooleana-1,9 dien-28-oyl imidazoline), a novel triterpenoid compound. Data from this study show that gene expression levels of inflammatory cytokine genes such as interleukin-1 beta (IL-1β), interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) were considerably increased by treatment with LPS in macrophages differentiated from ML-1 monocytes. Interestingly, LPS-induced increase in expression of pro-inflammatory cytokine levels is reduced by CDDO-IM. In addition, endogenous upregulation of a series of antioxidant molecules by CDDO-IM provided protection against LPS-induced cytotoxicity in macrophages. LPS-mediated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) transcriptional activity was also noted to decrease upon treatment with CDDO-IM in macrophages suggesting the involvement of the NF-κB signaling. This study would contribute to improve our understanding of the detoxification of endotoxin LPS by the triterpenoid CDDO-IM.

2022 ◽  
Vol 19 (1) ◽  
pp. 5-8
Mohan Belbase ◽  
Jyoti Adhikari

Introduction: Obsessive compulsive disorder is a common, chronic and disabling disorder marked by obsessions and/or compulsions. This study tries to find the demographic profiles, severity and response of antiobsessive drugs in young and adult patients with obsessive compulsive disorder. Aims: To study the socio-demographic profile, severity and treatment response to commonly used antiobsessive medications in male and female, and young and adults. Methods: This is a hospital based experimental study done in patients attending to psychiatry out-patient department over one year from February 2020 to January 2021.  Diagnosis of obsessive compulsive disorder was made based on International Classification of Disease- 10 criteria for research. Yale-Brown obsessive compulsive scale check list (adult and children) was applied in those patients and recorded accordingly on baseline (week 0) and patients were treated with specific serotonin reuptake inhibitors or tricyclic antidepressants in therapeutic doses for 6 weeks. On follow up at week 6, they were again reassessed and the scores were recorded and analyzed. Results: Among the total study subject (N-52), 26(50 %) were male and 26(50 %) were females. Patients in age bracket 20-29 is the most common age group representing 18(34.6 %). Mean age of patients is 30.36±11.93 years (28.65±9.80 in male and 32.04±13.73 in female). Severe form of obsessive compulsive disorder was the most common type that represent 33(63.5%) followed by moderate 16(30.8%) and extreme 3(5.7%). There is a difference of treatment response of antiobsessive therapy in male and female with statistical significance (p= 0.039). Conclusion: This study shows that obsessive compulsive disorder is most commonly found in 20-29 age group and the severe type is the most common. There is a significant difference in treatment response of antiobsessive therapy in male and female.

2022 ◽  
Vol 10 (1) ◽  
pp. 179
Jiří Trousil ◽  
Lucia Frgelecová ◽  
Pavla Kubíčková ◽  
Kristína Řeháková ◽  
Vladimír Drašar ◽  

Legionnaires’ disease is a severe form of lung infection caused by bacteria belonging to the genus Legionella. The disease severity depends on both host immunity and L. pneumophila virulence. The objective of this study was to describe the pathological spectrum of acute pneumonia caused by a virulent clinical isolate of L. pneumophila serogroup 1, sequence type 62. In A/JOlaHsd mice, we compared two infectious doses, namely, 104 and 106 CFU, and their impact on the mouse status, bacterial clearance, lung pathology, and blood count parameters was studied. Acute pneumonia resembling Legionnaires’ disease has been described in detail.

2022 ◽  
Vol 12 ◽  
Xuan Ying Poh ◽  
Fei Kean Loh ◽  
Jon S. Friedland ◽  
Catherine W. M. Ong

Tuberculosis (TB) remains one of the leading infectious killers in the world, infecting approximately a quarter of the world’s population with the causative organism Mycobacterium tuberculosis (M. tb). Central nervous system tuberculosis (CNS-TB) is the most severe form of TB, with high mortality and residual neurological sequelae even with effective TB treatment. In CNS-TB, recruited neutrophils infiltrate into the brain to carry out its antimicrobial functions of degranulation, phagocytosis and NETosis. However, neutrophils also mediate inflammation, tissue destruction and immunopathology in the CNS. Neutrophils release key mediators including matrix metalloproteinase (MMPs) which degrade brain extracellular matrix (ECM), tumor necrosis factor (TNF)-α which may drive inflammation, reactive oxygen species (ROS) that drive cellular necrosis and neutrophil extracellular traps (NETs), interacting with platelets to form thrombi that may lead to ischemic stroke. Host-directed therapies (HDTs) targeting these key mediators are potentially exciting, but currently remain of unproven effectiveness. This article reviews the key role of neutrophils and neutrophil-derived mediators in driving CNS-TB immunopathology.

2022 ◽  
Vol 15 (1) ◽  
Andrea Lombardo ◽  
Giuseppina Brocherel ◽  
Carla Donnini ◽  
Gianluca Fichi ◽  
Alessia Mariacher ◽  

AbstractBaylisascaris procyonis is a nematode parasite of the raccoon (Procyon lotor), and it can be responsible for a severe form of larva migrans in humans. This parasite has been reported from many countries all over the world, after translocation of its natural host outside its native geographic range, North America. In the period between January and August 2021, 21 raccoons were cage-trapped and euthanized in Tuscany (Central Italy), in the context of a plan aimed at eradicating a reproductive population of this non-native species. All the animals were submitted for necroscopic examination. Adult ascariids were found in the small intestine of seven raccoons (prevalence 33.3%). Parasites have been identified as B. procyonis based on both morphometric and molecular approaches. The aim of the present article is to report the first finding of this zoonotic parasite from Italy, highlighting the sanitary risks linked to the introduction of alien vertebrate species in new areas. Graphical Abstract

Vittorio Pengo

AbstractThrombotic antiphospholipid syndrome (APS) is a condition in which thrombosis in venous, arterial, and/or small vessels is ascribed to the presence of antiphospholipid antibodies (aPL). Among the various proposed pathogenic theories to explain thrombotic APS, those involving the interaction between aPL and the protein C system have gained much consensus. Indeed, robust data show an acquired activated protein C resistance (APC-R) in these patients. The role of aPL in this impairment is clear, but the mechanism of action is uncertain, as the type of aPL and to what extent aPL are involved remains a gray area. Lupus anticoagulant (LA) is often associated with APC-R, but antibodies generating LA comprise those directed to β2-glycoprotein I and antiphosphatidylserine/prothrombin. Moreover, the induction of APC-R by aPL requires the presence of phospholipids and is suppressed by the presence of an excess of phospholipids. How phospholipids exposed on the cell membranes work in the system in vivo is unknown. Interestingly, acquired APC-R due to aPL might explain the clinical phenotypes of thrombotic APS. Indeed, the literature reports cases of both venous and arterial thromboembolism as well as skin necrosis, the latter observed in the severe form of protein C deficiency and in catastrophic APS.

2022 ◽  
Vol 8 ◽  
Bipin P. Kulkarni ◽  
Kirti Ghargi ◽  
Chandrakala Shanmukhaiah ◽  
Shrimati D. Shetty

Introduction: Type 3 Von Willebrand Disease (VWD) is the least common but the most severe form of a disease, with a prevalence of about 0. 5 to 1 per million in Western countries. The prevalence of type 3 VWD in the developing countries, with a high degree of consanguinity, is about 6 per million. Moreover, due to underdiagnosis of the milder cases, the prevalence of type 3 VWD is about 50% of the cases. Rarely, some patients develop the Von Willebrand Factor (VWF) inhibitors, which may subsequently develop severe anaphylactic reactions on further exposure to the VWF containing factor replacement therapy. The prevalence of inhibitor development in patients with type 3 VWD has been shown to be in the range of 5.8 to 9.5%. In the absence of a gold standard assay for the quantitation of VWF inhibitors, a correct diagnosis and management of these patients are often challenging.Objectives: The objective of this study is to standardize the Bethesda assay for the VWF inhibitors and to estimate the VWD inhibitor titer in two cases of congenital type 3 VWD, which developed the VWF inhibitors.Results and Conclusions: We could successfully standardize the Bethesda assay for the quantitation of VWF inhibitors in two patients with congenital type 3 VWD with inhibitors.

2022 ◽  
Vol 119 (3) ◽  
pp. e2114886119
Wren E. Michaels ◽  
Cecilia Pena-Rasgado ◽  
Rusudan Kotaria ◽  
Robert J. Bridges ◽  
Michelle L. Hastings

CFTR gene mutations that result in the introduction of premature termination codons (PTCs) are common in cystic fibrosis (CF). This mutation type causes a severe form of the disease, likely because of low CFTR messenger RNA (mRNA) expression as a result of nonsense-mediated mRNA decay, as well as the production of a nonfunctional, truncated CFTR protein. Current therapeutics for CF, which target residual protein function, are less effective in patients with these types of mutations due in part to low CFTR protein levels. Splice-switching antisense oligonucleotides (ASOs), designed to induce skipping of exons in order to restore the mRNA open reading frame, have shown therapeutic promise preclinically and clinically for a number of diseases. We hypothesized that ASO-mediated skipping of CFTR exon 23 would recover CFTR activity associated with terminating mutations in the exon, including CFTR p.W1282X, the fifth most common mutation in CF. Here, we show that CFTR lacking the amino acids encoding exon 23 is partially functional and responsive to corrector and modulator drugs currently in clinical use. ASO-induced exon 23 skipping rescued CFTR expression and chloride current in primary human bronchial epithelial cells isolated from a homozygote CFTR-W1282X patient. These results support the use of ASOs in treating CF patients with CFTR class I mutations in exon 23 that result in unstable CFTR mRNA and truncations of the CFTR protein.

2022 ◽  
Vol 23 (2) ◽  
pp. 740
Jocelyne Magré ◽  
Xavier Prieur

Obesity prevalence is increasing worldwide, leading to cardiometabolic morbidities. Adipocyte dysfunction, impairing white adipose tissue (WAT) expandability and metabolic flexibility, is central in the development of obesity-related metabolic complications. Rare syndromes of lipodystrophy characterized by an extreme paucity of functional adipose tissue should be considered as primary adipocyte dysfunction diseases. Berardinelli-Seip congenital lipodystrophy (BSCL) is the most severe form with a near absence of WAT associated with cardiometabolic complications such as insulin resistance, liver steatosis, dyslipidemia, and cardiomyopathy. Twenty years ago, mutations in the BSCL2 gene have been identified as the cause of BSCL in human. BSCL2 encodes seipin, an endoplasmic reticulum (ER) anchored protein whose function was unknown back then. Studies of seipin knockout mice or rats demonstrated how seipin deficiency leads to severe lipodystrophy and to cardiometabolic complications. At the cellular levels, seipin is organized in multimers that are particularly enriched at ER/lipid droplet and ER/mitochondria contact sites. Seipin deficiency impairs both adipocyte differentiation and mature adipocyte maintenance. Experiments using adipose tissue transplantation in seipin knockout mice and tissue-specific deletion of seipin have provided a large body of evidence that liver steatosis, cardiomyopathy, and renal injury, classical diabetic complications, are all consequences of lipodystrophy. Rare adipocyte dysfunctions such as in BSCL are the key paradigm to unravel the pathways that control adipocyte homeostasis. The knowledge gathered through the study of these pathologies may bring new strategies to maintain and improve adipose tissue expandability.

Sign in / Sign up

Export Citation Format

Share Document