scholarly journals Mineralogic Analysis of Respirable Dust from 24 Underground Coal Mines in Four Geographic Regions of the United States

Author(s):  
E. Sarver ◽  
C. Keles ◽  
H. Lowers ◽  
R. Zulfikar ◽  
L. Zell-Baran ◽  
...  
2021 ◽  
Author(s):  
Younes Shekarian ◽  
Elham Rahimi ◽  
Naser Shekarian ◽  
Mohammad Rezaee ◽  
Pedram Roghanchi

Abstract In the United States, an unexpected and severe increase in coal miners’ lung diseases in the late 1990s prompted researchers to investigate the causes of the disease resurgence. This study aims to scrutinize the effects of various mining parameters, including coal rank, mine size, mining method, coal seam height, and geographical location on the prevalence of CWP in surface and underground coal mines. A comprehensive dataset was created using the U.S. Mine Safety and Health Administration (MSHA) Employment and Accident/Injury databases. The information was merged based on the mine ID by utilizing SQL data management software. A total number of 123,643 mine-year observations were included in the statistical analysis. Generalized Estimating Equation (GEE) model was used to conduct a statistical analysis on a total of 29,707, and 32,643 mine-year observations for underground and surface coal mines, respectively. The results of the econometrics approach revealed that coal workers in underground coal mines are at a greater risk of CWP comparing to those of surface coal operations. Furthermore, underground coal mines in the Appalachia and Interior regions are at a higher risk of CWP prevalence than the Western region. Surface coal mines in the Appalachian coal region are more susceptible to CWP than miners in the Western region. The analysis also indicated that coal workers working in smaller mines are more vulnerable to CWP than those in large mine sizes. Furthermore, coal workers in thin-seam underground mine operations are more likely to develop CWP.


2016 ◽  
Vol 68 (3) ◽  
pp. 51-57 ◽  
Author(s):  
E.C. Jong ◽  
J.A. Restrepo ◽  
K.D. Luxbacher ◽  
P.A. Kirsch ◽  
R. Mitra ◽  
...  

Author(s):  
Younes Shekarian ◽  
Elham Rahimi ◽  
Naser Shekarian ◽  
Mohammad Rezaee ◽  
Pedram Roghanchi

AbstractIn the United States, an unexpected and severe increase in coal miners’ lung diseases in the late 1990s prompted researchers to investigate the causes of the disease resurgence. This study aims to scrutinize the effects of various mining parameters, including coal rank, mine size, mine operation type, coal seam height, and geographical location on the prevalence of coal worker's pneumoconiosis (CWP) in surface and underground coal mines. A comprehensive dataset was created using the U.S. Mine Safety and Health Administration (MSHA) Employment and Accident/Injury databases. The information was merged based on the mine ID by utilizing SQL data management software. A total number of 123,589 mine-year observations were included in the statistical analysis. Generalized Estimating Equation (GEE) model was used to conduct a statistical analysis on a total of 29,707, and 32,643 mine-year observations for underground and surface coal mines, respectively. The results of the econometrics approach revealed that coal workers in underground coal mines are at a greater risk of CWP comparing to those of surface coal operations. Furthermore, underground coal mines in the Appalachia and Interior regions are at a higher risk of CWP prevalence than the Western region. Surface coal mines in the Appalachian coal region are more likely to CWP development than miners in the Western region. The analysis also indicated that coal workers working in smaller mines are more vulnerable to CWP than those in large mine sizes. Furthermore, coal workers in thin-seam underground mine operations are more likely to develop CWP.


2021 ◽  
pp. oemed-2021-107694
Author(s):  
Leonard H T Go ◽  
Francis H Y Green ◽  
Jerrold L Abraham ◽  
Andrew Churg ◽  
Edward L Petsonk ◽  
...  

ObjectivesIn 2010, 29 coal miners died due to an explosion at the Upper Big Branch (UBB) mine in West Virginia, USA. Autopsy examinations of 24 individuals with evaluable lung tissue identified 17 considered to have coal workers’ pneumoconiosis (CWP). The objectives of this study were to characterise histopathological findings of lung tissue from a sample of UBB fatalities and better understand the respirable dust concentrations experienced by these miners at UBB relative to other US coal mines.MethodsOccupational pulmonary pathologists evaluated lung tissue specimens from UBB fatalities for the presence of features of pneumoconiosis. Respirable dust and quartz samples submitted for regulatory compliance from all US underground coal mines prior to the disaster were analysed.ResultsFamilies of seven UBB fatalities provided consent for the study. Histopathologic evidence of CWP was found in all seven cases. For the USA, central Appalachia and UBB, compliance dust samples showed the geometric mean for respirable dust was 0.468, 0.420 and 0.518 mg/m3, respectively, and respirable quartz concentrations were 0.030, 0.038 and 0.061 mg/m3. After adjusting for quartz concentrations, UBB exceeded the US permissible exposure limit (PEL) for respirable dust in 28% of samples.ConclusionsAlthough higher than average respirable dust and quartz levels were observed at UBB, over 200 US underground coal mines had higher dust concentrations than UBB and over 100 exceeded the PEL more frequently. Together with lung histopathological findings among UBB fatalities, these data suggest exposures leading to CWP in the USA are more prevalent than previously understood.


2020 ◽  
Vol 159 (2) ◽  
pp. e19
Author(s):  
Michael D. Toboni ◽  
Alexander C. Cohen ◽  
Stuart Alan Ostby ◽  
Zachary L. Gentry ◽  
Sejong Bae ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document