Dianthus recticaulis, the correct name for Gypsophila stricta and G. alpina (≡ Petrorhagia alpina) (Caryophyllaceae)

Phytotaxa ◽  
2018 ◽  
Vol 347 (4) ◽  
pp. 297
Author(s):  
SERGEI L. MOSYAKIN ◽  
MYKOLA M. FEDORONCHUK

A recent molecular phylogenetic study of Caryophylleae (Caryophyllaceae) by Madhani et al. (2018: 96) showed that “Velezia and the second group of Petrorhagia (including P. armerioides, P. alpina and P. candica)” are phylogenetically rooted in Dianthus Linnaeus (1753: 409) sensu stricto. New names and new combinations were proposed by Madhani et al. (l.c.) to reflect the revealed phylogenetic patterns in an updated nomenclatural scheme.

Phytotaxa ◽  
2016 ◽  
Vol 252 (3) ◽  
pp. 231
Author(s):  
DONG-XIAN XU ◽  
SYLVAIN G. RAZAFIMANDIMBISON ◽  
ZHU-QIU SONG

Myrioneuron R. Brown ex J. D. Hooker in Bentham & Hooker (1873: 69) comprises about eight species of the family Rubiaceae and it is distributed in East Himalaya to South China (Govaerts et al. 2011). Although it was occasionally treated as a synonym of Mycetia Reinwardt (1825: 9) (Bakhuizen 1975) or Keenania J. D. Hooker (1880: 101) (Van Steenis 1987, Robbrecht 1988), most botanists accepted it as a distinct genus (Kurz 1877, Hooker 1880, Schumann 1891, Pitard 1923, Merrill 1942, Bremekamp 1952, Deb 1996, Lo 1999, Wright 1999, Kress et al. 2003; Chen & Taylor 2011, Govaerts et al. 2011). Most recently, however, a molecular phylogenetic study revealed that Myrioneuron and Mycetia are non-monophyletic and intermixed, and therefore both taxa were combined to represent a monophyletic genus and Mycetia was accepted as its generic name (Ginter et al. 2015). In the study, they published nine new combinations, including Mycetia angustifolia (J. D. Hooker 1880: 97) Razafim. & B. Bremer in Ginter et al. (2015: 293). However, this name is illegitimate because it is a later homonym of Mycetia angustifolia Ridley (1923: 68), in accordance with Article 53.1 of the ICN (McNeil et al. 2012).


2021 ◽  
Author(s):  
Martin Cheek ◽  
Denise Molmou ◽  
Sekou Magassouba ◽  
Jean Paul Ghogue

The genus Saxicolella Engl. (Podostemaceae) are African rheophytes, restricted to rapids and waterfalls as are all members of the family. Previously, Saxicolella sensu lato was shown to be polyphyletic with two separate clades in the molecular phylogenetic study of Koi et al. (2012). The name Pohliella Engl. was recently resurrected for one clade that is sister to the American genera Ceratolacis (Tul.)Wedd., Podostemum Michx. and all Old World Podostemoideae (podostemoids) (Cheek 2020). Pohliella has distichous phyllotaxy, bilocular ovaries, filiform roots with paired holdfasts, and rootcaps. The second clade, Saxicolella sensu stricto, including the type of the generic name, has spiral phyllotaxy, unilocular ovaries, ribbon-like or crustose roots that lack both holdfasts and rootcaps. Saxicolella sensu stricto, sampled from the type species, S. nana Engl. of Cameroon, is embedded within and near the base of the major clade of African podostemoids and is sister to all other African genera apart from Inversodicraea R.E.Fr. and Monandriella Engl. Recently reduced to three species in Cameroon and S.E. Nigeria by the resurrection of Pohliella (3 to 4 species in Ghana and Nigeria and Cameroon), Saxicolella sensu stricto is expanded to eight species in this monograph by description of five new taxa. Saxicolella futa Cheek and S. deniseae Cheek are newly described from Guinea, S. ijim Cheek from Cameroon, the informally named S. sp. A from Gabon, and S. angola Cheek from Angola. The known geographic range of the genus is thus expanded c. 2,500 km westwards to Guinea from eastern Nigeria and c.1,500 km southeastwards from Cameroon to Cuanza do Sul, Angola. The greatest concentration of species occurs in the Cross Sanaga interval of western Cameroon and eastern Nigeria, with three species. Cameroon (3 species) followed by Nigeria and Guinea (2 species each) are the countries with highest species diversity. The genus can be expected to be found in Sierra Leone, Liberia, Ivory Coast and Congo Republic. A classification is proposed grouping the species into three subgenera (Saxicolella, Butumia (G.Taylor) Cheek comb. et. stat. nov. and Kinkonia Cheek subgen. nov.) based on root morphology and shoot position and morphology. The discovery, morphology, circumscription, distribution, and ecology of Saxicolella is reviewed, an identification key to the species is presented, together with descriptions, synonymy, links to illustrations, and extinction risk assessments for each of the eight species now recognised. All of the species are provisionally assessed as either Endangered or Critically Endangered using the IUCN 2012 standard, making this genus among the most threatened of its size globally. The major threats, above all, are hydro-electric projects. Saxicolella deniseae may already be globally extinct, and two of the four known locations of S. angola appear lost, S. sp. A of Gabon is threatened at at least one of its three locations, while Saxicolella futa is threatened at all three locations, all due to incipient or active hydro electric projects. Contamination of watercourses by increased turbidity from silt-load due anthropic changes and by eutrophication from pollution are also threats for the majority of the species.


2010 ◽  
Vol 24 (6) ◽  
pp. 560 ◽  
Author(s):  
Julia D. Sigwart ◽  
Enrico Schwabe ◽  
Hiroshi Saito ◽  
Sarah Samadi ◽  
Gonzalo Giribet

Lepidopleurida is the earliest diverged group of living polyplacophoran molluscs. They are found predominantly in the deep sea, including sunken wood, cold seeps, other abyssal habitats, and a few species are found in shallow water. The group is morphologically identified by anatomical features of their gills, sensory aesthetes, and gametes. Their shell features closely resemble the oldest fossils that can be identified as modern polyplacophorans. We present the first molecular phylogenetic study of this group, and also the first combined phylogenetic analysis for any chiton, including three gene regions and 69 morphological characters. The results show that Lepidopleurida is unambiguously monophyletic, and the nine genera fall into five distinct clades, which partly support the current view of polyplacophoran taxonomy. The genus Hanleyella Sirenko, 1973 is included in the family Protochitonidae, and Ferreiraellidae constitutes another distinct clade. The large cosmopolitan genus Leptochiton Gray, 1847 is not monophyletic; Leptochiton and Leptochitonidae sensu stricto are restricted to North Atlantic and Mediterranean taxa. Leptochitonidae s. str. is sister to Protochitonidae. The results also suggest two separate clades independently inhabiting sunken wood substrates in the south-west Pacific. Antarctic and other chemosynthetic-dwelling species may be derived from wood-living species. Substantial taxonomic revision remains to be done to resolve lepidopleuran classification, but the phylogeny presented here is a dramatic step forward in clarifying the relationships within this interesting group.


Nematology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Samira Aliverdi ◽  
Ebrahim Pourjam ◽  
Majid Pedram

Summary Ditylenchus acantholimonis n. sp. is described based on morphological, morphometric and molecular characters. It was isolated from the rhizosphere soil of Acantholimon sp. in Golestan province, Iran, and is mainly characterised by having four lines in the lateral field, a pyriform to bottle-shaped offset pharyngeal bulb, post-vulval uterine sac 36.6-56.1% of the vulva to anus distance long, and a subcylindrical to conical tail with widely rounded tip. It is further characterised by short to medium-sized females, 480-617 μm long, with a fine stylet having small rounded knobs, V = 80.8-83.6, c = 11.0-13.8, c′ = 3.3-4.6, and males with 16.0-17.0 μm long spicules. The new species was morphologically compared with six species having four lines in their lateral field, rounded tail tip and comparable morphometric data namely: D. dipsacoideus, D. emus, D. exilis, D. paraparvus, D. sturhani, and D. solani. It was also compared with two species, D. ferepolitor and D. angustus, forming a maximally supported clade in the 18S tree. The phylogenetic analyses using the maximal number of Anguinidae and several Sphaerularioidea genera based upon partial 18S and 28S rDNA D2-D3 sequences revealed that Ditylenchus is polyphyletic. In the 18S tree, the new species formed a clade with D. ferepolitor (KJ636374) and D. angustus (AJ966483); in the 28S tree it formed a poorly supported clade with D. phyllobios (KT192618) and Ditylenchus sp. (MG865719).


2018 ◽  
Vol 117 (12) ◽  
pp. 3927-3934 ◽  
Author(s):  
Marisa C. Valadão ◽  
Beatriz C. M. Silva ◽  
Danimar López-Hernández ◽  
Jackson V. Araújo ◽  
Sean A. Locke ◽  
...  

2008 ◽  
Vol 98 (5) ◽  
pp. 499-507 ◽  
Author(s):  
H.C. Zhang ◽  
G.X. Qiao

AbstractThree traditional tribes of Fordini, Pemphigini and Eriosomatini comprise Pemphiginae, and there are two subtribes in Fordini and Pemphigini, respectively. Most of the species in this subfamily live heteroecious holocyclic lives with distinct primary host specificity. The three tribes of Pemphigini (except Prociphilina), Eriosomatini and Fordini use three families of plants, Salicaceae (Populus), Ulmaceae (Ulums) and Anacardiaceae (Pistacia and Rhus), as primary hosts, respectively, and form galls on them. Therefore, the Pemphigids are well known as gall makers, and their galls can be divided into true galls and pseudo-galls in type. We performed the first molecular phylogenetic study of Pemphiginae based on molecular data (EF-1α sequences). Results show that Pemphiginae is probably not a monophylum, but the monophyly of Fordini is supported robustly. The monophyly of Pemphigini is not supported, and two subtribes in it, Pemphigina and Prociphilina, are suggested to be raised to tribal level, equal with Fordini and Eriosomatini. The molecular phylogenetic analysis does not show definite relationships among the four tribes of Pemphiginae, as in the previous phylogenetic study based on morphology. It seems that the four tribes radiated at nearly the same time and then evolved independently. Based on this, we can speculate that galls originated independently four times in the four tribes, and there is no evidence to support that true galls are preceded by pseudo-galls, as in the case of thrips and willow sawflies.


PhytoKeys ◽  
2020 ◽  
Vol 152 ◽  
pp. 121-136
Author(s):  
Elson Felipe Sandoli Rossetto ◽  
Marcos A. Caraballo-Ortiz

Several genera of Nyctaginaceae, currently merged under Pisonia, have been described for the Indo-Pacific region. Results from a recent molecular phylogenetic study of tribe Pisonieae showed that Pisonia is non-monophyletic and comprises three well-supported lineages: one including typical Pisonia and allies (Pisonia s.str.), a clade of species which corresponds to the original description of Ceodes and a third lineage whose single representative was formerly treated under the monotypic genus Rockia. Thus, as part of an effort to achieve a natural classification for tribe Pisonieae, this work proposes to re-establish Ceodes and Rockia to accommodate taxa with inconspicuous glands on anthocarps, recognising 21 species (20 for the former and one for the latter), of which 16 are new combinations: Ceodes amplifoliacomb. nov., Ceodes artensiscomb. nov., Ceodes austro-orientaliscomb. nov., Ceodes browniicomb. nov., Ceodes caulifloracomb. nov., Ceodes coronatacomb. nov., Ceodes diandracomb. nov., Ceodes gigantocarpacomb. nov., Ceodes gracilescenscomb. nov., Ceodes lanceolatacomb. nov., Ceodes merytifoliacomb. nov., Ceodes muellerianacomb. nov., Ceodes rapaensiscomb. nov., Ceodes sechellarumcomb. nov., Ceodes taitensiscomb. nov. and Ceodes wagnerianacomb. nov. A general distribution of each species recognised in this work is also included, along with line drawings and colour pictures of representative species of Ceodes, Pisonia and Rockia and an updated dichotomous key based on reproductive characters for the nine genera (Ceodes, Cephalotomandra, Grajalesia, Guapira, Neea, Neeopsis, Pisonia, Pisoniella and Rockia) comprising the tribe Pisonieae. Résumé Plusieurs genres de Nyctaginaceae actuellement fusionnés sous Pisonia ont été décrits pour la région Indo-Pacifique. Les résultats d’une récente étude phylogénétique moléculaire de la tribu Pisonieae ont montré que Pisonia est non monophylétique et comprend trois lignées bien supportées: une comprenant Pisonia typique et ses alliés (Pisonia s.str.), un clade d’espèces qui correspond à la description originale de Ceodes et une troisième lignée dont l’unique représentant était auparavant traité sous le genre monotypique Rockia. Ainsi, dans le cadre d’un effort pour parvenir à une classification naturelle de la tribu Pisonieae, ce travail proposons de rétablir les Ceodes et Rockia pour accueillir des taxons avec des glandes discrètes sur les anthocarpes, reconnaissant 21 espèces (20 pour les premières et une pour les dernières), dont 16 sont de nouvelles combinaisons: Ceodes amplifoliacomb. nov., Ceodes artensiscomb. nov., Ceodes austro-orientaliscomb. nov., Ceodes browniicomb. nov., Ceodes caulifloracomb. nov., Ceodes coronatacomb. nov., Ceodes diandracomb. nov., Ceodes gigantocarpacomb. nov., Ceodes gracilescenscomb. nov., Ceodes lanceolatacomb. nov., Ceodes merytifoliacomb. nov., Ceodes muellerianacomb. nov., Ceodes rapaensiscomb. nov., Ceodes sechellarumcomb. nov., Ceodes taitensiscomb. nov. et Ceodes wagnerianacomb. nov. Une distribution générale de chaque espèce reconnue dans ce travail est également incluse, ainsi que des dessins au trait et des images en couleur des espèces représentatives de Ceodes, Pisonia et Rockia, et préparé une clé dichotomique mise à jour basée sur les caractères reproductifs des neuf genres (Ceodes, Cephalotomandra, Grajalesia, Guapira, Neea, Neeopsis, Pisonia, Pisoniella et Rockia) comprenant la tribu Pisonieae.


2016 ◽  
Vol 9 (2) ◽  
pp. 70-80
Author(s):  
Md. Shaifur Rahman ◽  
Sudarshan Chatterjee ◽  
Madhuri Haque ◽  
Hossen M. Jamil ◽  
Naznin Akhtar ◽  
...  

2006 ◽  
Vol 93 (12) ◽  
pp. 1828-1847 ◽  
Author(s):  
Carolina I. Calviño ◽  
Patricia M. Tilney ◽  
Ben-Erik van Wyk ◽  
Stephen R. Downie

Sign in / Sign up

Export Citation Format

Share Document