scholarly journals A Maximization Problem Involving a Fractional Laplace Type Operator

2021 ◽  
Vol 9 (3) ◽  
pp. 86
Author(s):  
Chong Qiu
2003 ◽  
Vol 14 (04) ◽  
pp. 397-412 ◽  
Author(s):  
CHRISTIAN BÄR ◽  
SERGIU MOROIANU

We describe the heat kernel asymptotics for roots of a Laplace type operator Δ on a closed manifold. A previously known relation between the Wodzicki residue of Δ and heat trace asymptotics is shown to hold pointwise for the corresponding densities.


Author(s):  
Nguyen N. Tran ◽  
Ha X. Nguyen

A capacity analysis for generally correlated wireless multi-hop multi-input multi-output (MIMO) channels is presented in this paper. The channel at each hop is spatially correlated, the source symbols are mutually correlated, and the additive Gaussian noises are colored. First, by invoking Karush-Kuhn-Tucker condition for the optimality of convex programming, we derive the optimal source symbol covariance for the maximum mutual information between the channel input and the channel output when having the full knowledge of channel at the transmitter. Secondly, we formulate the average mutual information maximization problem when having only the channel statistics at the transmitter. Since this problem is almost impossible to be solved analytically, the numerical interior-point-method is employed to obtain the optimal solution. Furthermore, to reduce the computational complexity, an asymptotic closed-form solution is derived by maximizing an upper bound of the objective function. Simulation results show that the average mutual information obtained by the asymptotic design is very closed to that obtained by the optimal design, while saving a huge computational complexity.


2021 ◽  
Vol 11 (14) ◽  
pp. 6401
Author(s):  
Kateryna Czerniachowska ◽  
Karina Sachpazidu-Wójcicka ◽  
Piotr Sulikowski ◽  
Marcin Hernes ◽  
Artur Rot

This paper discusses the problem of retailers’ profit maximization regarding displaying products on the planogram shelves, which may have different dimensions in each store but allocate the same product sets. We develop a mathematical model and a genetic algorithm for solving the shelf space allocation problem with the criteria of retailers’ profit maximization. The implemented program executes in a reasonable time. The quality of the genetic algorithm has been evaluated using the CPLEX solver. We determine four groups of constraints for the products that should be allocated on a shelf: shelf constraints, shelf type constraints, product constraints, and virtual segment constraints. The validity of the developed genetic algorithm has been checked on 25 retailing test cases. Computational results prove that the proposed approach allows for obtaining efficient results in short running time, and the developed complex shelf space allocation model, which considers multiple attributes of a shelf, segment, and product, as well as product capping and nesting allocation rule, is of high practical relevance. The proposed approach allows retailers to receive higher store profits with regard to the actual merchandising rules.


Sign in / Sign up

Export Citation Format

Share Document