scholarly journals Review of Reconfigurable Virtual Instrumentation and It Implementation in Cameroon Labs

2021 ◽  
Vol 9 (3) ◽  
pp. 87
Author(s):  
Gisele Beatrice Sonfack ◽  
Pabame Frederic
2020 ◽  
Vol 65 (1) ◽  
pp. 179-186
Author(s):  
Mihaela Dorica Stroia

Current software development directions open up a world of possibilities, especially in the engineering field. Present paper is meant to highlight the advantages and in particular the ease of using virtual instrumentation facilities, with a proper and adequate design and implementation of desired instrument. In this idea we bring into discussion a design for virtual instrument which can be used for data acquisition that can be stored for further simulations according to the needs required by the process in discussion.


2021 ◽  
Vol 54 (1-2) ◽  
pp. 141-151
Author(s):  
Dragan Živanović ◽  
Milan Simić

An implementation of a two-stage piece-wise linearization method for reduction of the thermocouple approximation error is presented in the paper. First, the whole thermocouple measurement chain of a transducer is described, and possible error is analysed to define the required level of accuracy for linearization of the transfer characteristics. Evaluation of linearization functions and analysis of approximation errors are performed by the virtual instrumentation software package LabVIEW. The method is appropriate for thermocouples and other sensors where nonlinearity varies a lot over the range of input values. The basic principle of this method is to first transform the abscissa of the transfer function by a linear segment look-up table in such a way that significantly nonlinear parts of the input range are expanded before a standard piece-wise linearization. In this way, applying equal-segment linearization two times has a similar effect to non-equal-segment linearization. For a given examples of the thermocouple transfer functions, the suggested method provides significantly better reduction of the approximation error, than the standard segment linearization, with equal memory consumption for look-up tables. The simple software implementation of this two-stage linearization method allows it to be applied in low calculation power microcontroller measurement transducers, as a replacement of the standard piece-wise linear approximation method.


2014 ◽  
Vol 984-985 ◽  
pp. 970-976
Author(s):  
Memala W. Abitha ◽  
V. Rajini

The three phase induction motor is a popularly used machine in many of the industries, which is well known for its robustness, reliability, cost effectiveness, efficient and safe operation. The unnoticed manufacturing failure, mistakes during repair work, exceeding life time may be some of the causes of the induction motor failure, which may lead to the unknown shut down time of the industry. The condition monitoring plays important role as it has the influence on the production of materials and profit. In our work, the induction motor is modelled using stationary reference frame and analysed for single phasing stator fault. The techniques used in detecting the single phasing (open circuit) failures are Park’s vector approach and Fast Fourier Transform (FFT). Park’s vector approach is used for detecting the faults occurring at various phases and FFT is used for detecting the faults of the induction motor working under no load and varying loading conditions.


2007 ◽  
Vol 56 (6) ◽  
pp. 2616-2622 ◽  
Author(s):  
E. Portillo ◽  
I. Cabanes ◽  
M. Marcos ◽  
D. Orive ◽  
J. A. Sanchez

1994 ◽  
Author(s):  
Kunimitsu Aoki ◽  
Tadashi Iino ◽  
Yoshiyuki Furuya ◽  
Yasuyuki Watanabe

Sign in / Sign up

Export Citation Format

Share Document