Virtual Instrumentation Based Analysis of Induction Motor

2014 ◽  
Vol 984-985 ◽  
pp. 970-976
Author(s):  
Memala W. Abitha ◽  
V. Rajini

The three phase induction motor is a popularly used machine in many of the industries, which is well known for its robustness, reliability, cost effectiveness, efficient and safe operation. The unnoticed manufacturing failure, mistakes during repair work, exceeding life time may be some of the causes of the induction motor failure, which may lead to the unknown shut down time of the industry. The condition monitoring plays important role as it has the influence on the production of materials and profit. In our work, the induction motor is modelled using stationary reference frame and analysed for single phasing stator fault. The techniques used in detecting the single phasing (open circuit) failures are Park’s vector approach and Fast Fourier Transform (FFT). Park’s vector approach is used for detecting the faults occurring at various phases and FFT is used for detecting the faults of the induction motor working under no load and varying loading conditions.

2016 ◽  
Vol 9 (6) ◽  
pp. 374 ◽  
Author(s):  
Bilal Djamal Eddine Cherif ◽  
Azeddine Bendiabdellah ◽  
Mohamed Amine Khelif

2017 ◽  
Vol 14 (1) ◽  
pp. 411-420
Author(s):  
W Abitha Memala ◽  
V Rajini

Induction motor stator fault is diagnosed by applying Discrete Wavelet transform on zero sequence components. The single phasing stator fault is created and diagnosed in the induction motor model developed in stationary reference frame, under varying load conditions. The stator inter-turn incipient fault is created and diagnosed in the induction motor experimental setup as well under no load condition. The qdo components are calculated from Park’s equations. The faults can be diagnosed from wavelet transform of the zero sequence current components. PSD is used for diagnosing the fault and the statistical value is used for verifying the result. The energy is calculated using Parseval’s theorem. The energy and the statistical data calculated from the wavelet coefficients of zero sequence current components are used as fault indicators. The energy value is able to reveal the fault severity in the induction motor stator winding. Power spectral Density along with Discrete Wavelet Transform plays very important role in diagnosing the fault.


2019 ◽  
Vol 4 (3) ◽  
pp. 201-205
Author(s):  
N. Balamurugan ◽  
S. Selvaperumal

Background: This article deals with the analysis on improved performance and efficiency of induction motor by using nano composites for stator winding. Methods: The nanocomposites are added with different enamel. Enamel is mostly preferred for induction motors’ winding, due to three main reasons: adhesion, infusion and plaster. To predetermine the plaster and nanocomposite conductor’s behavior when they are used for transmitting AC currents and developing AC magnetic field, a numerical analysis is performed. The total heat losses are determined by the heat run test. Open circuit and short circuit tests are used to analyze the performance and efficiency of the proposed induction motor. Results: The AC losses of composite and plaster conductors having good accord are compared with previous solid and hollow conductors. Analysis of the coil by a composite and plaster conductor shows that the AC losses in low current are lower than the coil, which is wrapped by a solid, and hallow conductors. Due to this reason, composite and plaster conductors are considered advantageous for low and medium power motors. Conclusion: Adding nano composites with the plaster material will help to improve electrical, thermal and mechanical characteristics. The property of enamel can change the lifetime of induction motor. The induction motor winding makes use of nano composites SiO2 and TiO2 with enamel coated.


Sign in / Sign up

Export Citation Format

Share Document