stator fault
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 36)

H-INDEX

15
(FIVE YEARS 4)

2021 ◽  
Vol 12 (4) ◽  
pp. 248
Author(s):  
Jing Tang ◽  
Chao Liang ◽  
Yuanhang Wang ◽  
Shuhan Lu ◽  
Jian Zhou

The permanent magnet synchronous motor (PMSM) is used widely in electric vehicle application due to its high-power density and efficiency. Stator fault is a frequently fault in the motor as it usually works in a harsh environment. Therefore, a stator fault diagnosis method based on the offline motor parameter measurement is proposed to detect and evaluate the stator fault in this paper. Firstly, the line-to-line resistance and inductance of a healthy motor are analyzed when a DC voltage and a high-frequency voltage are excited to the motor respectively, where the DC and AC equivalent circuits at a standstill are introduced. Then, to analyze the resistance and inductance of the stator fault, an extra branch is added to the fault part to obtain the fault equivalent circuits. Accordingly, the stator fault resistance and inductance are derived, and then the resistance and inductance differences between healthy and fault motors are analyzed to provide the basis for the stator fault detection. Furthermore, the fault indicators are defined based on the resistance and inductance differences when a motor has a stator fault. Hence the stator fault severity and location can be evaluated by using these fault indicators. Finally, the experimental results from a 400 W permanent magnet synchronous motor are demonstrated to validate the proposed method.


2021 ◽  
Author(s):  
D. Khamari ◽  
C. Bouchareb ◽  
I. Benlaloui ◽  
F. Benmessaoud ◽  
T. Boutabba ◽  
...  

2021 ◽  
Author(s):  
Siwan Narayan ◽  
Rahul R Kumar ◽  
Giansalvo Cirrincione ◽  
Maurizio Cirrincione
Keyword(s):  

Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2313
Author(s):  
Miftah Irhoumah ◽  
Remus Pusca ◽  
Eric Lefèvre ◽  
David Mercier ◽  
Raphael Romary

The aim of this paper is to detect a stator inter-turn short circuit in a synchronous machine through the analysis of the external magnetic field measured by external flux sensors. The paper exploits a methodology previously developed, based on the analysis of the behavior with load variation of sensitive spectral lines issued from two flux sensors positioned at 180° from each other around the machine. Further developments to improve this method were made, in which more than two flux sensors were used to keep a good sensitivity for stator fault detection. The method is based on the Pearson correlation coefficient calculated from sensitive spectral lines at different load operating conditions. Fusion information with belief function is then applied to the correlation coefficients, which enable the detection of an incipient fault in any phase of the machine. The method has the advantage to be fully non-invasive and does not require knowledge of the healthy state.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1319
Author(s):  
Hisahide Nakamura ◽  
Keisuke Asano ◽  
Seiran Usuda ◽  
Yukio Mizuno

Various industrial fields use motors as key power sources, and their importance is increasing. In motor manufacturing, various tests are conducted for each motor before shipping. The no-load test is one such test, in which, for instance, the current flowing into the motor and temperature of the bearing is measured to confirm whether they are within specific values. Reducing labor, cost, and time in identifying an initially defective product requires a simple and reliable method. This study proposes a new diagnosis to identify the motor conditions based on the rotating sound of the motor in the no-load test. First, the rotating sounds of motors were measured using several healthy motors and motors with faults. Second, their sound characteristics were analyzed, and it was found that the characteristic signals appeared in a specific frequency range periodically. Then, considering these phenomena, a diagnostic method based on deep learning was proposed to judge the faults using long short-term memory (LSTM). Finally, the effectiveness of the proposed method was verified through experiments.


2021 ◽  
Author(s):  
İlker Şahin ◽  
Ozan Keysan

<p>In this paper, a novel and non-invasive stator inter-turn short circuit (ITSC) online detection method is presented for an induction machine (IM), driven by a two-level voltage source inverter (2L-VSI) via finite control set model predictive control (FCS-MPC). The main idea of the proposed method is to utilize the controller itself as an observer: under the presence of a fault, the distribution of inverter switching states significantly deviates from the original balanced case. Therefore, by inspecting the inverter switching vectors, which are the outcomes of the FCS-MPC routine's online optimization procedure, a stator fault can be detected efficiently. It is observed that both the zero-vector allocation over the complex plane and the allocation among the active vectors are influenced by the presence of a stator short-circuit fault. The proposed fault detection strategy introduces little to no extra burden for processor and memory. Experimental results verify the proposed method, and inter-turn short circuits of two and three turns are confidently detected and located for a 500 W, two-pole IM.</p>


2021 ◽  
Author(s):  
İlker Şahin ◽  
Ozan Keysan

<p>In this paper, a novel and non-invasive stator inter-turn short circuit (ITSC) online detection method is presented for an induction machine (IM), driven by a two-level voltage source inverter (2L-VSI) via finite control set model predictive control (FCS-MPC). The main idea of the proposed method is to utilize the controller itself as an observer: under the presence of a fault, the distribution of inverter switching states significantly deviates from the original balanced case. Therefore, by inspecting the inverter switching vectors, which are the outcomes of the FCS-MPC routine's online optimization procedure, a stator fault can be detected efficiently. It is observed that both the zero-vector allocation over the complex plane and the allocation among the active vectors are influenced by the presence of a stator short-circuit fault. The proposed fault detection strategy introduces little to no extra burden for processor and memory. Experimental results verify the proposed method, and inter-turn short circuits of two and three turns are confidently detected and located for a 500 W, two-pole IM.</p>


Sign in / Sign up

Export Citation Format

Share Document