scholarly journals Inverse Vector Function Hilbert Boundary Value Problem

2016 ◽  
Vol 5 (5) ◽  
pp. 160
Author(s):  
Ding Yun
1997 ◽  
Vol 4 (6) ◽  
pp. 557-566
Author(s):  
B. Půža

Abstract Sufficient conditions of solvability and unique solvability of the boundary value problem u (m)(t) = f(t, u(τ 11(t)), . . . , u(τ 1k (t)), . . . , u (m–1)(τ m1(t)), . . . . . . , u (m–1)(τ mk (t))), u(t) = 0, for t ∉ [a, b], u (i–1)(a) = 0 (i = 1, . . . , m – 1), u (m–1)(b) = 0, are established, where τ ij : [a, b] → R (i = 1, . . . , m; j = 1, . . . , k) are measurable functions and the vector function f : ]a, b[×Rkmn → Rn is measurable in the first and continuous in the last kmn arguments; moreover, this function may have nonintegrable singularities with respect to the first argument.


2020 ◽  
Vol 17 (4) ◽  
pp. 484-508
Author(s):  
Vladimir Gutlyanskii ◽  
Vladimir Ryazanov ◽  
Eduard Yakubov ◽  
Artyem Yefimushkin

We investigate the Hilbert boundary-value problem for Beltrami equations $\overline\partial f=\mu\partial f$ with singularities in generalized quasidisks $D$ whose Jordan boundary $\partial D$ consists of a countable collection of open quasiconformal arcs and, maybe, a countable collection of points. Such generalized quasicircles can be nowhere even locally rectifiable but include, for instance, all piecewise smooth curves, as well as all piecewise Lipschitz Jordan curves. Generally speaking, generalized quasidisks do not satisfy the standard $(A)-$condition in PDE by Ladyzhenskaya-Ural'tseva, in particular, the outer cone touching condition, as well as the quasihyperbolic boundary condition by Gehring-Martio that we assumed in our last paper for the uniformly elliptic Beltrami equations. In essence, here, we admit any countable collection of singularities of the Beltrami equations on the boundary and arbitrary singularities inside the domain $D$ of a general nature. As usual, a point in $\overline D$ is called a singularity of the Beltrami equation, if the dilatation quotient $K_{\mu}:=(1+|\mu|)/(1-|\mu|)$ is not essentially bounded in all its neighborhoods. Presupposing that the coefficients of the problem are arbitrary functions of countable bounded variation and the boundary data are arbitrary measurable with respect to the logarithmic capacity, we prove the existence of regular solutions of the Hilbert boundary-value problem. As a consequence, we derive the existence of nonclassical solutions of the Dirichlet, Neumann, and Poincar\'{e} boundary-value problems for equations of mathematical physics with singularities in anisotropic and inhomogeneous media.


Sign in / Sign up

Export Citation Format

Share Document