A Study on Feature Subset Selection Using Rough Set Theory

2012 ◽  
Vol 1 (2) ◽  
pp. 239-249
Author(s):  
Jianchao Han
2018 ◽  
Vol 7 (2) ◽  
pp. 75-84 ◽  
Author(s):  
Shivam Shreevastava ◽  
Anoop Kumar Tiwari ◽  
Tanmoy Som

Feature selection is one of the widely used pre-processing techniques to deal with large data sets. In this context, rough set theory has been successfully implemented for feature selection of discrete data set but in case of continuous data set it requires discretization, which may cause information loss. Fuzzy rough set theory approaches have also been used successfully to resolve this issue as it can handle continuous data directly. Moreover, almost all feature selection techniques are used to handle homogeneous data set. In this article, the center of attraction is on heterogeneous feature subset reduction. A novel intuitionistic fuzzy neighborhood models have been proposed by combining intuitionistic fuzzy sets and neighborhood rough set models by taking an appropriate pair of lower and upper approximations and generalize it for feature selection, supported with theory and its validation. An appropriate algorithm along with application to a data set has been added.


Author(s):  
Richard Jensen

Data reduction is an important step in knowledge discovery from data. The high dimensionality of databases can be reduced using suitable techniques, depending on the requirements of the data mining processes. These techniques fall in to one of the following categories: those that transform the underlying meaning of the data features and those that are semantics-preserving. Feature selection (FS) methods belong to the latter category, where a smaller set of the original features is chosen based on a subset evaluation function. The process aims to determine a minimal feature subset from a problem domain while retaining a suitably high accuracy in representing the original features. In knowledge discovery, feature selection methods are particularly desirable as they facilitate the interpretability of the resulting knowledge. For this, rough set theory has been successfully used as a tool that enables the discovery of data dependencies and the reduction of the number of features contained in a dataset using the data alone, while requiring no additional information.


Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 788 ◽  
Author(s):  
Xiao Zhang ◽  
Xia Liu ◽  
Yanyan Yang

The information entropy developed by Shannon is an effective measure of uncertainty in data, and the rough set theory is a useful tool of computer applications to deal with vagueness and uncertainty data circumstances. At present, the information entropy has been extensively applied in the rough set theory, and different information entropy models have also been proposed in rough sets. In this paper, based on the existing feature selection method by using a fuzzy rough set-based information entropy, a corresponding fast algorithm is provided to achieve efficient implementation, in which the fuzzy rough set-based information entropy taking as the evaluation measure for selecting features is computed by an improved mechanism with lower complexity. The essence of the acceleration algorithm is to use iterative reduced instances to compute the lambda-conditional entropy. Numerical experiments are further conducted to show the performance of the proposed fast algorithm, and the results demonstrate that the algorithm acquires the same feature subset to its original counterpart, but with significantly less time.


2008 ◽  
Vol 178 (18) ◽  
pp. 3577-3594 ◽  
Author(s):  
Qinghua Hu ◽  
Daren Yu ◽  
Jinfu Liu ◽  
Congxin Wu

Sign in / Sign up

Export Citation Format

Share Document