neighborhood rough set
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 59)

H-INDEX

17
(FIVE YEARS 4)

2022 ◽  
Author(s):  
li zou ◽  
Siyuan Ren ◽  
Yibo Sun ◽  
Xinhua Yang

Abstract In neighborhood rough set theory, attribute reduction based on measure of information has important application significance. The influence of different decision classes was not considered for calculation of traditional conditional neighborhood entropy, and the improvement of algorithm based on conditional neighborhood entropy mainly includes of introducing multi granularity and different levels, while the mutual influence between samples with different labels is less considered. To solve this problem, this paper uses the supervised strategy to improve the conditional neighborhood entropy of three-layer granulation. By using two different neighborhood radii to adjust the mutual influence degree of different label samples, and by considering the mutual influence between conditional attributes through the feature complementary relationship, a neighborhood rough set attribute reduction algorithm based on supervised granulation is proposed. Experiment results on UCI data sets show that the proposed algorithm is superior to the traditional conditional neighborhood entropy algorithm in both aspects of reduction rate and reduction accuracy. Finally, the proposed algorithm is applied to the evaluation of fatigue life influencing factors of titanium alloy welded joints. The results of coupling relationship analysis show that the effect of joint type should be most seriously considered in the calculation of stress concentration factor. The results of influencing factors analysis show that the stress range has the highest weight among all the fatigue life influencing factors of titanium alloy welded joint.


Author(s):  
Jiucheng Xu ◽  
Kaili Shen ◽  
Lin Sun

AbstractMulti-label feature selection, a crucial preprocessing step for multi-label classification, has been widely applied to data mining, artificial intelligence and other fields. However, most of the existing multi-label feature selection methods for dealing with mixed data have the following problems: (1) These methods rarely consider the importance of features from multiple perspectives, which analyzes features not comprehensive enough. (2) These methods select feature subsets according to the positive region, while ignoring the uncertainty implied by the upper approximation. To address these problems, a multi-label feature selection method based on fuzzy neighborhood rough set is developed in this article. First, the fuzzy neighborhood approximation accuracy and fuzzy decision are defined in the fuzzy neighborhood rough set model, and a new multi-label fuzzy neighborhood conditional entropy is designed. Second, a mixed measure is proposed by combining the fuzzy neighborhood conditional entropy from information view with the approximate accuracy of fuzzy neighborhood from algebra view, to evaluate the importance of features from different views. Finally, a forward multi-label feature selection algorithm is proposed for removing redundant features and decrease the complexity of multi-label classification. The experimental results illustrate the validity and stability of the proposed algorithm in multi-label fuzzy neighborhood decision systems, when compared with related methods on ten multi-label datasets.


This paper provides a new approach for human identification based on Neighborhood Rough Set (NRS) algorithm with biometric application of ear recognition. The traditional rough set model can just be used to evaluate categorical features. The neighborhood model is used to evaluate both numerical and categorical features by assigning different thresholds for different classes of features. The feature vectors are obtained from ear image and ear matching process is performed. Actually, matching is a process of ear identification. The extracted features are matched with classes of ear images enrolled in the database. NRS algorithm is developed in this work for feature matching. A set of 20 persons are used for experimental analysis and each person is having six images. The experimental result illustrates the high accuracy of NRS approach when compared to other existing techniques.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jing Zhang ◽  
Guang Lu ◽  
Jiaquan Li ◽  
Chuanwen Li

Mining useful knowledge from high-dimensional data is a hot research topic. Efficient and effective sample classification and feature selection are challenging tasks due to high dimensionality and small sample size of microarray data. Feature selection is necessary in the process of constructing the model to reduce time and space consumption. Therefore, a feature selection model based on prior knowledge and rough set is proposed. Pathway knowledge is used to select feature subsets, and rough set based on intersection neighborhood is then used to select important feature in each subset, since it can select features without redundancy and deals with numerical features directly. In order to improve the diversity among base classifiers and the efficiency of classification, it is necessary to select part of base classifiers. Classifiers are grouped into several clusters by k-means clustering using the proposed combination distance of Kappa-based diversity and accuracy. The base classifier with the best classification performance in each cluster will be selected to generate the final ensemble model. Experimental results on three Arabidopsis thaliana stress response datasets showed that the proposed method achieved better classification performance than existing ensemble models.


2021 ◽  
pp. 108127
Author(s):  
Juncheng Bai ◽  
Bingzhen Sun ◽  
Xiaoli Chu ◽  
Ting Wang ◽  
Hongtao Li ◽  
...  

2021 ◽  
pp. 108025
Author(s):  
Shuangjie Li ◽  
Kaixiang Zhang ◽  
Yali Li ◽  
Shuqin Wang ◽  
Shaoqiang Zhang

2021 ◽  
pp. 1-13
Author(s):  
Tao Yin ◽  
Xiaojuan Mao ◽  
Xingtan Wu ◽  
Hengrong Ju ◽  
Weiping Ding ◽  
...  

Neighborhood classifier, a common classification method, is applied in pattern recognition and data mining. The neighborhood classifier mainly relies on the majority voting strategy to judge each category. This strategy only considers the number of samples in the neighborhood but ignores the distribution of samples, which leads to a decreased classification accuracy. To overcome the shortcomings and improve the classification performance, D-S evidence theory is applied to represent the evidence information support of other samples in the neighborhood, and the distance between samples in the neighborhood is taken into account. In this paper, a novel attribute reduction method of neighborhood rough set with a dynamic updating strategy is developed. Different from the traditional heuristic algorithm, the termination threshold of the proposed reduction algorithm is dynamically optimized. Therefore, when the attribute significance is not monotonic, this method can retrieve a better value, in contrast to the traditional method. Moreover, a new classification approach based on D-S evidence theory is proposed. Compared with the classical neighborhood classifier, this method considers the distribution of samples in the neighborhood, and evidence theory is applied to describe the closeness between samples. Finally, datasets from the UCI database are used to indicate that the improved reduction can achieve a lower neighborhood decision error rate than classical heuristic reduction. In addition, the improved classifier acquires higher classification performance in contrast to the traditional neighborhood classifier. This research provides a new direction for improving the accuracy of neighborhood classification.


2021 ◽  
pp. 580-590
Author(s):  
Lijuan Shi ◽  
Zhou Feng ◽  
Yiyu Sang ◽  
Xinlin Xie ◽  
Xinying Xu

Sign in / Sign up

Export Citation Format

Share Document