A Gelatin-Hyaluronic Acid Double Cross-Linked Hydrogel for Regulating the Growth and Dual Dimensional Cartilage Differentiation of Bone Marrow Mesenchymal Stem Cells

2021 ◽  
Vol 17 (6) ◽  
pp. 1044-1057
Author(s):  
Ying Ren ◽  
Yuan Zhang ◽  
Han Zhang ◽  
Yunping Wang ◽  
Lingrong Liu ◽  
...  

Owing to its unique physiochemical properties similar to the extracellular matrix (ECM), three-dimensional (3D) crosslinked hydrogels are widely studied materials for tissue engineering. In this study, to mimic the ECM microenvironment, a two-step covalent cross-linking with hyaluronic acid and gelatin was performed to form an interpenetrating polymer network structure. Gelatin as the first network greatly improved the mechanical strength of the hydrogels, while a hyaluronic acid network as the second network improved the tenacity and biological activity. Compared with a single network hydrogel, the interpenetrating hydrogel system can further regulate the mechanical properties of the hydrogel by adjusting the ratio of the two components, thereby changing the proliferation, activity, and direction of cartilage differentiation of bone marrow mesenchymal stem cells (BMSCs). Not only that, with two culture methods for BMSCs on the surface and 3D wrapped in the double cross-linked hydrogels, they exhibited their potential to induce BMSCs to cartilage differentiation under the condition of 3D encapsulation of BMSCs and contact with BMSCs on its surface. As a scaffold material for cartilage tissue engineering, this double cross-linked hydrogel demonstrated its high feasibility and applicability in delivering BMSCs in vivo and repairing defects.

Cell Research ◽  
2008 ◽  
Vol 18 (S1) ◽  
pp. S56-S56 ◽  
Author(s):  
Chang M Guo ◽  
Kelly YW Chan ◽  
Philip Cheang ◽  
Kam M Hui ◽  
Ivy AW Ho ◽  
...  

2020 ◽  
Author(s):  
Damien Tucker ◽  
Karen Still ◽  
Ashley Blom ◽  
Anthony P. Hollander ◽  
Wael Kafienah

ABSTRACTCartilage tissue engineering using bone marrow-derived mesenchymal stem cells (BM-MSCs) is a growing technology for the repair of joint defects. Culturing BM-MSCs to over confluence has historically been avoided due to perceived risk to cell viability, growth inhibition and differentiation potential. Here we show that a simple change in culture practice, based on mimicking the condensation phase during embryonic cartilage development, results in biochemically and histologically superior cartilage tissue engineered constructs. Whole transcriptome analysis of the condensing cells revealed a phenotype associated with early commitment to chondrogenic precursors. This simple adjustment to the common stem cell culture technique would impact the quality of all cartilage tissue engineering modalities utilising these cells.


2013 ◽  
Vol 21 ◽  
pp. S310 ◽  
Author(s):  
C. Sanjurjo-Rodríguez ◽  
A.H. Martínez-Sánchez ◽  
E. Muiños López ◽  
T. Hermida Gómez ◽  
I.M. Fuentes Boquete ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weigang Li ◽  
Wenbin Liu ◽  
Wei Wang ◽  
Jiachen Wang ◽  
Tian Ma ◽  
...  

Abstract Background The repair of critical-sized bone defects is always a challenging problem. Electromagnetic fields (EMFs), used as a physiotherapy for bone defects, have been suspected to cause potential hazards to human health due to the long-term exposure. To optimize the application of EMF while avoiding its adverse effects, a combination of EMF and tissue engineering techniques is critical. Furthermore, a deeper understanding of the mechanism of action of EMF will lead to better applications in the future. Methods In this research, bone marrow mesenchymal stem cells (BMSCs) seeded on 3D-printed scaffolds were treated with sinusoidal EMFs in vitro. Then, 5.5 mm critical-sized calvarial defects were created in rats, and the cell scaffolds were implanted into the defects. In addition, the molecular and cellular mechanisms by which EMFs regulate BMSCs were explored with various approaches to gain deeper insight into the effects of EMFs. Results The cell scaffolds treated with EMF successfully accelerated the repair of critical-sized calvarial defects. Further studies revealed that EMF could not directly induce the differentiation of BMSCs but improved the sensitivity of BMSCs to BMP signals by upregulating the quantity of specific BMP (bone morphogenetic protein) receptors. Once these receptors receive BMP signals from the surrounding milieu, a cascade of reactions is initiated to promote osteogenic differentiation via the BMP/Smad signalling pathway. Moreover, the cytokines secreted by BMSCs treated with EMF can better facilitate angiogenesis and osteoimmunomodulation which play fundamental roles in bone regeneration. Conclusion In summary, EMF can promote the osteogenic potential of BMSCs and enhance the paracrine function of BMSCs to facilitate bone regeneration. These findings highlight the profound impact of EMF on tissue engineering and provide a new strategy for the clinical treatment of bone defects.


2014 ◽  
Vol 2 (23) ◽  
pp. 3609-3617 ◽  
Author(s):  
Haifeng Zeng ◽  
Xiyu Li ◽  
Fang Xie ◽  
Li Teng ◽  
Haifeng Chen

A novel approach for labelling and tracking BMSCs in bone tissue engineering by using dextran-coated fluorapatite nanorods doped with lanthanides.


Sign in / Sign up

Export Citation Format

Share Document