Interpenetrating Polymer Network
Recently Published Documents


TOTAL DOCUMENTS

849
(FIVE YEARS 288)

H-INDEX

58
(FIVE YEARS 21)

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3200
Author(s):  
Minori Hatta ◽  
Akikazu Shinya ◽  
Harunori Gomi ◽  
Pekka K. Vallittu ◽  
Eija Säilynoja ◽  
...  

The purpose of this study was to evaluate the effects of interpenetrating polymer network (IPN) thermoplastic resin on the flexural strength of fibre-reinforced composite (FRC) with different IPN polymer compositions. The penetration of bonding resin into semi-IPN FRC posts was also evaluated. The IPN thermoplastic resin used was UDMA-MMA monomer with either PMMA (0.5%, 2%, 5%) or PMMA-copolymer (0.5%, 2%). A no added IPN polymer resin was also made. Mixed resin was impregnated to S- and E-glass fibre rovings. These resins and resin impregnated fibres were used for flexural strength (FS) test. To evaluate the penetration of bonding resin into semi-IPN post, SEM observation was done with various impregnation time and polymerization mehods (hand-light- and oven-cure). The result of FS was recorded from 111.7 MPa (no-IPN polymer/no-fibre-reinforcement) to 543.0 MPa (5% PMMA/S-glass FRC). ANOVA showed that there were significant differences between fibre-reinforcement and no-fibre-reinforcement (p < 0.01) both in S- and E-glass fibre groups, and between 0.5% PMMA and 5% PMMA in the S-glass FRC group. SEM micrographs showed that the penetration layers of bonding resin into hand-light cured semi-IPN posts were different according to impregnation time. Fibre reinforcement is effective to improve flexural strength. The depth of penetration layer of bonding resin into semi-IPN matrix resin was improved when a hand-light cure was used.


Author(s):  
Debdatta Ratna ◽  
Vishal G. Dalvi ◽  
Srikanth Billa ◽  
Sandeep K. Sharma ◽  
Sangram K. Rath ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Amir Narimani ◽  
Farid Kordnejad ◽  
Prabhjyot Kaur ◽  
Saeed Bazgir ◽  
Mahmood Hemmati ◽  
...  

Abstract The purpose of the present work is to enhance the thermal stability and rheological properties of semi-interpenetrating polymer network (IPN) hydrogel based on partially hydrolyzed polyacrylamide/hydroxypropyl guar (HPAM/HPG) nanocomposite reinforced with graphene oxide (GO), at temperatures (200 and 240 °F) for use in oil recovery applications. FTIR spectra of the IPN nanocomposite hydrogels revealed interactions of GO with HPAM/HPG chains. An increase in the viscosity is also observed from the rheological study. Moreover, IPN and its nanocomposite hydrogels exhibited non-Newtonian behavior. The decline of viscosity of IPN nanocomposite hydrogels was observed with an increase in the temperature from 200 to 240 °F but was still higher than IPN hydrogel without GO. Dispersion of GO through the HPAM/HPG hydrogel matrix was evaluated by SEM morphology and electrical conductivity. The IPN nanocomposite hydrogels showed high viscosity stability, thermal stability, and flow activation energy as compared to IPN hydrogel without GO. Therefore, the addition of 0.1 wt.% of GO to the HPAM/HPG matrix is suitable to create a cross-linked polymer solution with improved properties which may be beneficial for use in oil recovery applications.


Author(s):  
B. N. V. S. Ganesh Gupta K ◽  
Bhaskar Sen ◽  
Mritunjay Maharudrayya Hiremath ◽  
Rajesh Kumar Prusty ◽  
Bankim Chandra Ray

2021 ◽  
Vol 21 ◽  
pp. 100514
Author(s):  
D. Massana Roquero ◽  
P. Bollella ◽  
O. Smutok ◽  
E. Katz ◽  
A. Melman

Sign in / Sign up

Export Citation Format

Share Document