collagen type
Recently Published Documents


TOTAL DOCUMENTS

2607
(FIVE YEARS 524)

H-INDEX

99
(FIVE YEARS 8)

Author(s):  
Hamed Alizadeh Sardroud ◽  
Tasker Wanlin ◽  
Xiongbiao Chen ◽  
B. Frank Eames

Chondrocytes that are impregnated within hydrogel constructs sense applied mechanical force and can respond by expressing collagens, which are deposited into the extracellular matrix (ECM). The intention of most cartilage tissue engineering is to form hyaline cartilage, but if mechanical stimulation pushes the ratio of collagen type I (Col1) to collagen type II (Col2) in the ECM too high, then fibrocartilage can form instead. With a focus on Col1 and Col2 expression, the first part of this article reviews the latest studies on hyaline cartilage regeneration within hydrogel constructs that are subjected to compression forces (one of the major types of the forces within joints) in vitro. Since the mechanical loading conditions involving compression and other forces in joints are difficult to reproduce in vitro, implantation of hydrogel constructs in vivo is also reviewed, again with a focus on Col1 and Col2 production within the newly formed cartilage. Furthermore, mechanotransduction pathways that may be related to the expression of Col1 and Col2 within chondrocytes are reviewed and examined. Also, two recently-emerged, novel approaches of load-shielding and synchrotron radiation (SR)–based imaging techniques are discussed and highlighted for future applications to the regeneration of hyaline cartilage. Going forward, all cartilage tissue engineering experiments should assess thoroughly whether fibrocartilage or hyaline cartilage is formed.


Cosmetics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Nesma Aly ◽  
Emilie Benoit ◽  
Jean-Luc Chaubard ◽  
Kavyasree Chintalapudi ◽  
Soojin Choung ◽  
...  

Collagen and its derivative proteins have been widely used as a major component for cosmetic formulations as a natural ingredient and moisturizer. Most commercially available collagens are animal-derived collagen type I and other forms of collagen, such as type III collagen, are far less prevalent in animals, making extraction and purification extremely difficult and expensive. Here, we report the production of a 50 kDa protein produced in yeast that is 100% identical to the N-terminus of the human type III collagen. This recombinant protein has a larger molecular weight than most incumbent recombinant collagen proteins available for personal care applications. We report the industrialization of both the fermentation and purification processes to produce a final recombinant protein product. This final protein product was shown to be safe for general applications to human skin and compatible with common formulation protocols, including ethanol-based formulations. This recombinant collagen type III protein was also shown to uniquely stimulate both collagen type I and type III production and secretion by primary human dermal fibroblasts. The unique combination of biostimulation, compatibility with beauty product formulations and demonstrated commercial production, make this novel recombinant type III collagen a good candidate for broad application in the cosmetics industry.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12493
Author(s):  
Tingting Zhong ◽  
Zeying Jiang ◽  
Xiangdong Wang ◽  
Honglei Wang ◽  
Meiyi Song ◽  
...  

Background Clear cell renal cell carcinoma (ccRCC) is a tumor that frequently shows the hematogenous pathway and tends to be resistant to radiotherapy and chemotherapy. However, the exact mechanism of ccRCC metastasis remains unknown. Methods Differentially expressed genes (DEGs) of three gene expression profiles (GSE85258, GSE105288 and GSE22541) downloaded from the Gene Expression Omnibus (GEO) database were analyzed by GEO2R analysis, and co-expressed DEGs among the datasets were identified using a Venn drawing tool. The co-expressed DEGs were investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and hub genes were determined based on the protein-protein interaction network established by STRING. After survival analysis performed on UALCAN website, possible key genes were selected and verified in ccRCC cell lines and ccRCC tissues (n = 44). Statistical analysis was conducted using GraphPad Prism (Version 8.1.1). Results A total of 104 co-expressed DEGs were identified in the three datasets. Pathway analysis revealed that these genes were enriched in the extracellular matrix (ECM)–receptor interaction, protein digestion and absorption and focal adhesion. Survival analysis on 17 hub genes revealed that four key genes with a significant impact on survival: procollagen C-endopeptidase enhancer (PCOLCE), prolyl 4-hydroxylase subunit beta (P4HB), collagen type VI alpha 2 (COL6A2) and collagen type VI alpha 3 (COL6A3). Patients with higher expression of these key genes had worse survival than those with lower expression. In vitro experiments revealed that the mRNA expression levels of PCOLCE, P4HB and COL6A2 were three times higher and that of COL6A3 mRNA was 16 times higher in the metastatic ccRCC cell line Caki-1 than the corresponding primary cell line Caki-2. Immunohistochemistry revealed higher expression of the proteins encoded by these four genes in metastatic ccRCC compared with tumors from the corresponding primary sites, with statistical significance. Conclusion PCOLCE, P4HB, COL6A2 and COL6A3 are upregulated in metastatic ccRCC and might be related to poor prognosis and distant metastases.


Author(s):  
Cheng Hu ◽  
Wenqi Liu ◽  
Linyu Long ◽  
Zhicun Wang ◽  
Yihui Yuan ◽  
...  

Correction for ‘Microenvironment-responsive multifunctional hydrogels with spatiotemporal sequential release of tailored recombinant human collagen type III for the rapid repair of infected chronic diabetic wounds’ by Cheng Hu et al., J. Mater. Chem. B, 2021, 9, 9684–9699, DOI: 10.1039/D1TB02170B.


Nanoscale ◽  
2022 ◽  
Author(s):  
Lin-yu Long ◽  
Wenqi Liu ◽  
Li Li ◽  
Cheng Hu ◽  
Shuyi He ◽  
...  

The first recombinant humanized collagen type III (rhCol III) and naproxen (Nap) loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles incorporated hyaluronic acid (HA) microneedle (MN) was fabricated for diabetic chronic wounds therapy.


2021 ◽  
Vol 23 (1) ◽  
pp. 166
Author(s):  
Ting-Wei Lee ◽  
Cheng-Chih Chung ◽  
Ting-I Lee ◽  
Yung-Kuo Lin ◽  
Yu-Hsun Kao ◽  
...  

Fibroblast growth factor (FGF)-23 induces hypertrophy and calcium (Ca2+) dysregulation in cardiomyocytes, leading to cardiac arrhythmia and heart failure. However, knowledge regarding the effects of FGF-23 on cardiac fibrogenesis remains limited. This study investigated whether FGF-23 modulates cardiac fibroblast activity and explored its underlying mechanisms. We performed MTS analysis, 5-ethynyl-2’-deoxyuridine assay, and wound-healing assay in cultured human atrial fibroblasts without and with FGF-23 (1, 5 and 25 ng/mL for 48 h) to analyze cell proliferation and migration. We found that FGF-23 (25 ng/mL, but not 1 or 5 ng/mL) increased proliferative and migratory abilities of human atrial fibroblasts. Compared to control cells, FGF-23 (25 ng/mL)-treated fibroblasts had a significantly higher Ca2+ entry and intracellular inositol 1,4,5-trisphosphate (IP3) level (assessed by fura-2 ratiometric Ca2+ imaging and enzyme-linked immunosorbent assay). Western blot analysis showed that FGF-23 (25 ng/mL)-treated cardiac fibroblasts had higher expression levels of calcium release-activated calcium channel protein 1 (Orai1) and transient receptor potential canonical (TRPC) 1 channel, but similar expression levels of α-smooth muscle actin, collagen type IA1, collagen type Ⅲ, stromal interaction molecule 1, TRPC 3, TRPC6 and phosphorylated-calcium/calmodulin-dependent protein kinase II when compared with control fibroblasts. In the presence of ethylene glycol tetra-acetic acid (a free Ca2+ chelator, 1 mM) or U73122 (an inhibitor of phospholipase C, 1 μM), control and FGF-23-treated fibroblasts exhibited similar proliferative and migratory abilities. Moreover, polymerase chain reaction analysis revealed that atrial fibroblasts abundantly expressed FGF receptor 1 but lacked expressions of FGF receptors 2-4. FGF-23 significantly increased the phosphorylation of FGF receptor 1. Treatment with PD166866 (an antagonist of FGF receptor 1, 1 μM) attenuated the effects of FGF-23 on cardiac fibroblast activity. In conclusion, FGF-23 may activate FGF receptor 1 and subsequently phospholipase C/IP3 signaling pathway, leading to an upregulation of Orai1 and/or TRPC1-mediated Ca2+ entry and thus enhancing human atrial fibroblast activity.


Toxins ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 10
Author(s):  
Emmanouil Mavrogeorgis ◽  
Harald Mischak ◽  
Agnieszka Latosinska ◽  
Antonia Vlahou ◽  
Joost P. Schanstra ◽  
...  

Collagen is a major component of the extracellular matrix (ECM) and has an imminent role in fibrosis, in, among others, chronic kidney disease (CKD). Collagen alpha-1(I) (col1a1) is the most abundant collagen type and has previously been underlined for its contribution to the disease phenotype. Here, we examined 5000 urinary peptidomic datasets randomly selected from healthy participants or patients with CKD to identify urinary col1a1 fragments and study their abundance, position in the main protein, as well as their correlation with renal function. We identified 707 col1a1 peptides that differed in their amino acid sequence and/or post-translational modifications (hydroxyprolines). Well-correlated peptides with the same amino acid sequence, but a different number of hydroxyprolines, were combined into a final list of 503 peptides. These 503 col1a1 peptides covered 69% of the full col1a1 sequence. Sixty-three col1a1 peptides were significantly and highly positively associated (rho > +0.3) with the estimated glomerular filtration rate (eGFR), while only six peptides showed a significant and strong, negative association (rho < −0.3). A similar tendency was observed for col1a1 peptides associated with ageing, where the abundance of most col1a1 peptides decreased with increasing age. Collectively the results show a strong association between collagen peptides and loss of kidney function and suggest that fibrosis, potentially also of other organs, may be the main consequence of an attenuation of collagen degradation, and not increased synthesis.


2021 ◽  
Vol 23 (1) ◽  
pp. 91
Author(s):  
Tomasz P. Lehmann ◽  
Urszula Guderska ◽  
Klaudia Kałek ◽  
Maria Marzec ◽  
Agnieszka Urbanek ◽  
...  

This article describes several recent examples of miRNA governing the regulation of the gene expression involved in bone matrix construction. We present the impact of miRNA on the subsequent steps in the formation of collagen type I. Collagen type I is a main factor of mechanical bone stiffness because it constitutes 90–95% of the organic components of the bone. Therefore, the precise epigenetic regulation of collagen formation may have a significant influence on bone structure. We also describe miRNA involvement in the expression of genes, the protein products of which participate in collagen maturation in various tissues and cancer cells. We show how non-collagenous proteins in the extracellular matrix are epigenetically regulated by miRNA in bone and other tissues. We also delineate collagen mineralisation in bones by factors that depend on miRNA molecules. This review reveals the tissue variability of miRNA regulation at different levels of collagen maturation and mineralisation. The functionality of collagen mRNA regulation by miRNA, as proven in other tissues, has not yet been shown in osteoblasts. Several collagen-regulating miRNAs are co-expressed with collagen in bone. We suggest that collagen mRNA regulation by miRNA could also be potentially important in bone metabolism.


2021 ◽  
Vol 23 (1) ◽  
pp. 32
Author(s):  
María Blanco ◽  
Noelia Sanz ◽  
Ana C. Sánzhez ◽  
Begoña Correa ◽  
Ricardo I. Pérez-Martín ◽  
...  

High molecular weight (Mw) collagen hydrolysates have been demonstrated to produce a higher synthesis of collagen type I mRNA. Mw determination is a key factor maximizing the effect of collagen hydrolysates on collagen type I synthesis by fibroblasts. This work aimed to achieve a high average Mw in Blue Shark Collagen Hydrolysate, studying different hydrolysis parameters by GPC-LS analysis and testing its effect on mRNA Type I collagen expression. Analysis revealed differences in blue shark collagen hydrolysates Mw depending on hydrolysis conditions. Papain leads to obtaining a significantly higher Mw hydrolysate than Alcalase at different times of hydrolysis and at different enzyme/substrate ratios. Besides, the time of the hydrolysis factor is more determinant than the enzyme/substrate ratio factor for obtaining a higher or lower hydrolysate Mw when using Papain as the enzyme. Contrary, Alcalase hydrolysates resulted in similar Mw with no significant differences between different conditions of hydrolysis assayed. Blue shark collagen hydrolysate showing the highest Mw showed neither cytotoxic nor proliferation effect on fibroblast cell culture. Besides, it exhibited an increasing effect on both mRNA expression and pro-collagen I production.


Sign in / Sign up

Export Citation Format

Share Document