scholarly journals Sinusoidal electromagnetic fields accelerate bone regeneration by boosting the multifunctionality of bone marrow mesenchymal stem cells

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weigang Li ◽  
Wenbin Liu ◽  
Wei Wang ◽  
Jiachen Wang ◽  
Tian Ma ◽  
...  

Abstract Background The repair of critical-sized bone defects is always a challenging problem. Electromagnetic fields (EMFs), used as a physiotherapy for bone defects, have been suspected to cause potential hazards to human health due to the long-term exposure. To optimize the application of EMF while avoiding its adverse effects, a combination of EMF and tissue engineering techniques is critical. Furthermore, a deeper understanding of the mechanism of action of EMF will lead to better applications in the future. Methods In this research, bone marrow mesenchymal stem cells (BMSCs) seeded on 3D-printed scaffolds were treated with sinusoidal EMFs in vitro. Then, 5.5 mm critical-sized calvarial defects were created in rats, and the cell scaffolds were implanted into the defects. In addition, the molecular and cellular mechanisms by which EMFs regulate BMSCs were explored with various approaches to gain deeper insight into the effects of EMFs. Results The cell scaffolds treated with EMF successfully accelerated the repair of critical-sized calvarial defects. Further studies revealed that EMF could not directly induce the differentiation of BMSCs but improved the sensitivity of BMSCs to BMP signals by upregulating the quantity of specific BMP (bone morphogenetic protein) receptors. Once these receptors receive BMP signals from the surrounding milieu, a cascade of reactions is initiated to promote osteogenic differentiation via the BMP/Smad signalling pathway. Moreover, the cytokines secreted by BMSCs treated with EMF can better facilitate angiogenesis and osteoimmunomodulation which play fundamental roles in bone regeneration. Conclusion In summary, EMF can promote the osteogenic potential of BMSCs and enhance the paracrine function of BMSCs to facilitate bone regeneration. These findings highlight the profound impact of EMF on tissue engineering and provide a new strategy for the clinical treatment of bone defects.

2020 ◽  
Vol 7 (4) ◽  
pp. 119
Author(s):  
Kazutoshi Iijima ◽  
Hidenori Otsuka

Currently, well-known surgical procedures for bone defects are classified into four types: (1) autogenous bone graft transplantation, (2) allogeneic bone graft transplantation, (3) xenogeneic bone graft transplantation, and (4) artificial bone graft transplantation. However, they are often risky procedures and related to postoperative complications. As an alternative, tissue engineering to regenerate new bone often involves the use of mesenchymal stem cells (MSCs), derived from bone marrow, adipose tissues, and so on, which are cultured into three-dimensional (3D) scaffolds to regenerate bone tissue by osteoinductive signaling. In this manuscript, we provide an overview of recent treatment of bone defects and the studies on the creation of cell scaffolds for bone regeneration. Bone regeneration from bone marrow-derived mesenchymal stem cells using silica nonwoven fabric by the authors’ group were provided. Potential application and future direction of the present systems were also described.


Author(s):  
Mi Wu ◽  
Zhengyi Han ◽  
Wen Liu ◽  
Jinrong Yao ◽  
Bingjiao Zhao ◽  
...  

LAPONITE® (LAP) nanoplatelets were incorporated within a regenerated silk fibroin (RSF) microfibrous mat via electrospinning, which exhibited better cell adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) than the pristine RSF ones.


2014 ◽  
Vol 2 (23) ◽  
pp. 3609-3617 ◽  
Author(s):  
Haifeng Zeng ◽  
Xiyu Li ◽  
Fang Xie ◽  
Li Teng ◽  
Haifeng Chen

A novel approach for labelling and tracking BMSCs in bone tissue engineering by using dextran-coated fluorapatite nanorods doped with lanthanides.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ran Zhang ◽  
Xuewen Li ◽  
Yao Liu ◽  
Xiaobo Gao ◽  
Tong Zhu ◽  
...  

Biocompatible scaffolding materials play an important role in bone tissue engineering. This study sought to develop and characterize a nano-hydroxyapatite (nHA)/collagen I (ColI)/multi-walled carbon nanotube (MWCNT) composite scaffold loaded with recombinant bone morphogenetic protein-9 (BMP-9) for bone tissue engineering by in vitro and in vivo experiments. The composite nHA/ColI/MWCNT scaffolds were fabricated at various concentrations of MWCNTs (0.5, 1, and 1.5% wt) by blending and freeze drying. The porosity, swelling rate, water absorption rate, mechanical properties, and biocompatibility of scaffolds were measured. After loading with BMP-9, bone marrow mesenchymal stem cells (BMMSCs) were seeded to evaluate their characteristics in vitro and in a critical sized defect in Sprague-Dawley rats in vivo. It was shown that the 1% MWCNT group was the most suitable for bone tissue engineering. Our results demonstrated that scaffolds loaded with BMP-9 promoted differentiation of BMMSCs into osteoblasts in vitro and induced more bone formation in vivo. To conclude, nHA/ColI/MWCNT scaffolds loaded with BMP-9 possess high biocompatibility and osteogenesis and are a good candidate for use in bone tissue engineering.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Aofei Yang ◽  
Chaochao Yu ◽  
Qilin Lu ◽  
Hao Li ◽  
Zhanghua Li ◽  
...  

Osteoporosis, femoral head necrosis, and congenital bone defects are orthopedic disorders characterized by reduced bone generation and insufficient bone mass. Bone regenerative therapy primarily relies on the bone marrow mesenchymal stem cells (BMSCs) and their ability to differentiate osteogenically. Icariin (ICA) is the active ingredient of Herba epimedii, a common herb used in traditional Chinese medicine (TCM) formulations, and can effectively enhance BMSC proliferation and osteogenesis. However, the underlying mechanism of ICA action in BMSCs is not completely clear. In this review, we provide an overview of the studies on the role and mechanism of action of ICA in BMSCs, to provide greater insights into its potential clinical use in bone regeneration.


Odontology ◽  
2016 ◽  
Vol 105 (4) ◽  
pp. 392-397 ◽  
Author(s):  
Takafumi Ito ◽  
Tomoatsu Kaneko ◽  
Yukiko Sueyama ◽  
Reika Kaneko ◽  
Takashi Okiji

Sign in / Sign up

Export Citation Format

Share Document