A Simple and Accurate Numeric Solution Method to Pull-In Voltage of Simply Supported Functionally Graded Material Microbeam with the Thermal Stress Effect

2017 ◽  
Vol 14 (4) ◽  
pp. 1821-1831
Author(s):  
Yongping Yu ◽  
Xiangzhida Li ◽  
Youhong Sun ◽  
Ke Gao
2019 ◽  
Vol 969 ◽  
pp. 116-121
Author(s):  
Ch. Naveen Reddy ◽  
M. Bhargav ◽  
T. Revanth

This work investigates the complete analytical solution for functionally graded material (FGM) plates incorporated with smart material. The odjective of the present work is to determine bending characteristics of piezoelectric FGM plates with different geometrical parameters, voltages and boundary conditions for electro-mechanical loading. In this work an analytical formulation based on higher order shear deformation theory (HSDT) is presented for the piezoelectric FGM plates. The solutions are obtained in closed from using Navier’s technique for piezoelectric FGM plates a specific type of simply supported boundary conditions and pc code have been developed to find out the deflections and stresses for various parameters. All the solutions are plotted against aspect proportion, side to thickness proportion as a function of material variety parameter (n) and thickness coordinate for different voltages. The significant trends from the results are obtained.


2013 ◽  
Vol 705 ◽  
pp. 30-35
Author(s):  
K. Swaminathan ◽  
D.T. Naveenkumar

Analytical formulations and solutions to the static analysis of simply supported Functionally Graded Material (FGM) plates hitherto not reported in the literature based on a higher-order refined shear deformation theory with nine degrees-of-freedom already reported in the literature are presented. This computational model incorporates the plate deformations which account for the effect of transverse shear deformation. The transverse displacement is assumed to be constant throughout the thickness. In addition, another higher order theory with five degrees-of-freedom and the first order theory already reported in the literature are also considered for comparison. The governing equations of equilibrium using all the computational models are derived using the Principle of Minimum Potential Energy (PMPE) and the analytical solutions are obtained in closed-form using Naviers solution technique. A simply supported plate with SS-1 boundary conditions subjected to transverse loading is considered for all the problems under investigation. The varying parameters considered are the side-to-thickness ratio, power law function, edge ratio and the degree of anisotropy. Correctness of the formulation and the solution method is first established and then extensive numerical results using all the models are presented which will serve as a bench mark for future investigations.


2018 ◽  
Vol 38 ◽  
pp. 02013
Author(s):  
Wang Xin ◽  
Han Zhi Jun ◽  
Wu Ya Li

Based on the strain assumption and linear mixing rate of Vogit, the physical property parameter expression of functionally graded material plates is obtained. According to the theory of small deformation and Hamilton principle, the dynamic buckling governing equation of functionally graded material plates under longitudinal load is obtained. Using the method of trial function, the analytical expression of critical load and the buckling solution of the functionally graded material plate under conditions of one edge fixed and three edges simply supported is obtained. The analytical expression of critical load is numerically calculated by METLAB. The influence of geometric size, gradient index, modal order and material composition on critical load is discussed. The results show that the critical buckling load decreases exponentially with the increase of critical length, decreases with the increase of gradient index k, increases with the increase of modal order, and the elastic modulus of constituent materials has significant effect on the critical load. The higher-order buckling modes of functionally graded material plates are prone to occur under the condition of high longitudinal load.


Sign in / Sign up

Export Citation Format

Share Document