analytical formulation
Recently Published Documents


TOTAL DOCUMENTS

438
(FIVE YEARS 85)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Vol 922 (2) ◽  
pp. 258
Author(s):  
Doğa Veske ◽  
Imre Bartos ◽  
Zsuzsa Márka ◽  
Szabolcs Márka

Abstract The observed distributions of the source properties from gravitational-wave (GW) detections are biased due to the selection effects and detection criteria in the detections, analogous to the Malmquist bias. In this work, this observation bias is investigated through its fundamental statistical and physical origins. An efficient semi-analytical formulation for its estimation is derived, which is as accurate as the standard method of numerical simulations, with only a millionth of the computational cost. Then, the estimated bias is used for unmodeled inferences on the binary black hole population. These inferences show additional structures, specifically two peaks in the joint mass distribution around binary masses ∼10 M ⊙ and ∼30 M ⊙. Example ready-to-use scripts and some produced data sets for this method are shared in an online repository.


2021 ◽  
Vol 152 ◽  
pp. 111368
Author(s):  
Lucía Pedraza ◽  
Juan Pablo Pinasco ◽  
Nicolas Saintier ◽  
Pablo Balenzuela

Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 398
Author(s):  
Guillem Domènech

We provide a review on the state-of-the-art of gravitational waves induced by primordial fluctuations, so-called induced gravitational waves. We present the intuitive physics behind induced gravitational waves and we revisit and unify the general analytical formulation. We then present general formulas in a compact form, ready to be applied. This review places emphasis on the open possibility that the primordial universe experienced a different expansion history than the often assumed radiation dominated cosmology. We hope that anyone interested in the topic will become aware of current advances in the cosmology of induced gravitational waves, as well as becoming familiar with the calculations behind.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2759
Author(s):  
Jonghwan Lee

A single unified analytical model is presented to predict the shot noise for both the source-to-drain (SD) and the gate tunneling current in sub-10 nm MOSFETs with ultrathin oxide. Based on the Landauer formula, the model is constructed from the sequential tunneling flows associated with number fluctuations. This approach provides the analytical formulation of the shot noise as a function of the applied voltages. The model performs well in predicting the Fano factor for shot noise in the SD and gate tunneling currents.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2317
Author(s):  
Enrique Peña ◽  
Jose Anta

Laboratory experiments and field works play a crucial role in hydraulic research, development, and design as many hydraulic processes elude analytical formulation or, at least for the time being, are not readily nor accurately reproducible with numerical simulations [...]


2021 ◽  
Vol 13 (16) ◽  
pp. 3318
Author(s):  
Pasquale Imperatore

Modeling of synthetic aperture radar (SAR) imaging distortions induced by topography is addressed and a novel radiometric calibration method is proposed in this paper. An analytical formulation of the problem is primarily provided in purely geometrical terms, by adopting the theoretical notions of the differential geometry of surfaces. The novel and conceptually simple formulation relies on a cylindrical coordinate system, whose longitudinal axis corresponds to the sensor flight direction. A 3D representation of the terrain shape is then incorporated into the SAR imaging model by resorting to a suitable parametrization of the observed ground surface. Within this analytical framework, the area-stretching function quantitatively expresses in geometrical terms the inherent local radiometric distortions. This paper establishes its analytical expression in terms of the magnitude of the gradient of the look-angle function uniquely defined in the image domain, thus resulting in being mathematically concise and amenable to a straightforward implementation. The practical relevance of the formulation is also illustrated from a computational perspective, by elucidating its effective discrete implementation. In particular, an inverse cylindrical mapping approach is adopted, thus avoiding the drawback of pixel area fragmentation and integration required in forward-mapping-based approaches. The effectiveness of the proposed SAR radiometric calibration method is experimentally demonstrated by using COSMO-SkyMed SAR data acquired over a mountainous area in Italy.


Sign in / Sign up

Export Citation Format

Share Document