Development of Optimized Algorithm and Field Programmable Gate Array Implementation for Bio Medical Image Denoising for Health Informatics Applications

2021 ◽  
Vol 11 (10) ◽  
pp. 2626-2638
Author(s):  
D. Devasena ◽  
M. Jagadeeswari ◽  
K. Srinivasan

Denoising images is a most difficult task in applications for image processing. The image specifics are preserved and the additional sounds found in the images are removed. It is also a challenge to remove noise from medical and satellite images. It improves the diagnostic capacity of medical images and satellite images visual clarity. The noise in the images varies and its density varies depending on imaging techniques. The algorithms in the literature were suggested based on the noise density and the forms of noise. The aim of this paper is to eliminate the noise from ultrasound, magnetic resonance images and satellite images using an effective denoisation algorithm Hybrid Wiener Adaptive Weighted Median filter (HWAWMF) which is the combination of Wiener and Adaptive Centre Pixel Weighted Median Filter (ACPWMEF). In terms of performance parameters with an improved Peak to Signal Noise Ratio(PSNR), the hybrid filter shows better results than ACPWMEF. The Vienna filter takes out the additional noises in the images thus blurs the image’s optical perception. And also uses optimization approaches to enhance the image consistency. This paper proposes HWAWMF (PSO HWAWMF) based on particle swarm optimization and HWAWMF based on dragonfly optimization algorithms (DOAF HWAWMF). Visual vision and PSNR also have been improved by using the optimising algorithm at an average of 3.18 db, 4.83 db, and 3.14 db for lower noise (0.0% to 30%), medium noise (40% to 60%) as well as high noise density (70% to 90%). The efficacy of the algorithm using MATLAB R2013 is verified through both medical images, simulated and actual. In order to assess the computer complexity of the Altera algorithm for location, power and time using Cyclone II EP2C35F672C6, Cyclone II and Stratix III EP3SL150F1152C2, this algorithm is also implemented in the Altera Field Programable Gate Array (FPGA).

2021 ◽  
Vol 27 (5) ◽  
pp. 356-363
Author(s):  
Hyun-Bin Lim ◽  
Eung-su Kim ◽  
Duk-Man Lee ◽  
Hee-Soo Kim ◽  
Soon-Yong Park

Author(s):  
N. Rajalakshmi ◽  
K. Narayanan ◽  
P. Amudhavalli

<p>Preliminary diagnosing of MRI images from the hospital cannot be relied on because of the chances of occurrence of artifacts resulting in degraded quality of image, while others may be confused with pathology. Obtained MRI image usually contains limited artifacts. It becomes complex one for doctors in analyzing them. By increasing the contrast of an image, it will be easy to analyze. In order to find the tumor part efficiently MRI brain image should be enhanced properly. The image enhancement methods mainly improve the visual appearance of MRI images. The goal of denoising is to remove the noise, which may corrupt an image during its acquisition or transmission, while retaining its quality. In this paper effectiveness of seven denoising algorithms viz. median filter, wiener filter, wavelet filter, wavelet based wiener, NLM, wavelet based NLM, proposed wavelet based weighted median filter(WMF) using MRI images in the presence of additive white Gaussian noise is compared. The experimental results are analyzed in terms of various image quality metrics.</p>


1984 ◽  
Vol 27 (8) ◽  
pp. 807-818 ◽  
Author(s):  
D. R. K. Brownrigg

Sign in / Sign up

Export Citation Format

Share Document