Dipolar Interaction Effects in the Magnetic and Magnetotransport Properties of Ordered Nanoparticle Arrays

2008 ◽  
Vol 8 (6) ◽  
pp. 2929-2943 ◽  
Author(s):  
D. Kechrakos ◽  
K. N. Trohidou

Assemblies of magnetic nanoparticles exhibit interesting physical properties arising from the competition of intraparticle dynamics and interparticle interactions. In ordered arrays of magnetic nanoparticles magnetostatic interparticle interactions introduce collective dynamics acting competitively to random anisotropy. Basic understanding, characterization and control of dipolar interaction effects in arrays of magnetic nanoparticles is an issue of central importance. To this end, numerical simulation techniques offer an indispensable tool. We report on Monte Carlo studies of the magnetic hysteresis and spin-dependent transport in thin films formed by ordered arrays of magnetic nanoparticles. Emphasis is given to the modifications of the single-particle behavior due to interparticle dipolar interactions as these arise in quantities of experimental interest, such as, the magnetization, the susceptibility and the magnetoresistance. We investigate the role of the structural parameters of an array (interparticle separation, number of stacked monolayers) and the role of the internal structure of the nanoparticles (single phase, core–shell). Dipolar interactions are responsible for anisotropic magnetic behavior between the in-plane and out-of-plane directions of the sample, which is reflected on the investigated magnetic properties (magnetization, transverse susceptibility and magnetoresistance) and the parameters of the array (remanent magnetization, coercive field, and blocking temperature). Our numerical results are compared to existing measurements on self-assembled arrays of Fe-based and Co nanoparticles is made.

2017 ◽  
Vol 110 (13) ◽  
pp. 133701 ◽  
Author(s):  
C. Y. Wang ◽  
T. W. Yang ◽  
D. Shen ◽  
K. L. Chen ◽  
J. M. Chen ◽  
...  

2007 ◽  
Vol 101 (10) ◽  
pp. 103907 ◽  
Author(s):  
D. S. Schmool ◽  
R. Rocha ◽  
J. B. Sousa ◽  
J. A. M. Santos ◽  
G. N. Kakazei ◽  
...  

2012 ◽  
Vol 3 ◽  
pp. 4500204-4500204 ◽  
Author(s):  
N. Eibagi ◽  
J. J. Kan ◽  
F. E. Spada ◽  
E. E. Fullerton

2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Brian Sylcott ◽  
Jeremy J. Michalek ◽  
Jonathan Cagan

In conjoint analysis, interaction effects characterize how preference for the level of one product attribute is dependent on the level of another attribute. When interaction effects are negligible, a main effects fractional factorial experimental design can be used to reduce data requirements and survey cost. This is particularly important when the presence of many parameters or levels makes full factorial designs intractable. However, if interaction effects are relevant, main effects design can create biased estimates and lead to erroneous conclusions. This work investigates consumer preference interactions in the nontraditional context of visual choice-based conjoint analysis, where the conjoint attributes are parameters that define a product's shape. Although many conjoint studies assume interaction effects to be negligible, they may play a larger role for shape parameters. The role of interaction effects is explored in two visual conjoint case studies. The results suggest that interactions can be either negligible or dominant in visual conjoint, depending on consumer preferences. Generally, we suggest using randomized designs to avoid any bias resulting from the presence of interaction effects.


Nanoscale ◽  
2015 ◽  
Vol 7 (17) ◽  
pp. 7717-7725 ◽  
Author(s):  
M. Campanini ◽  
R. Ciprian ◽  
E. Bedogni ◽  
A. Mega ◽  
V. Chiesi ◽  
...  

Left: morphological and magnetic characterization of magnetite NPs. Right: Lorentz microscopy unveils the role of dipolar interactions in magnetic hyperthermia of superparamagnetic NPs.


Sign in / Sign up

Export Citation Format

Share Document