dipolar interactions
Recently Published Documents


TOTAL DOCUMENTS

634
(FIVE YEARS 76)

H-INDEX

59
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Igor Aronson ◽  
Jiyuan Wang ◽  
Mu-Jie Huang ◽  
Remmi Baker-Sediako ◽  
Raymond Kapral

Abstract Control of the individual and collective behavior of self-propelled synthetic micro-objects has immediate application for nanotechnology, robotics, and precision medicine. Despite significant progress in the synthesis and characterization of self-propelled Janus (two-faced) particles, predictive understanding of their behavior remains challenging, especially if the particles have anisotropic forms. Here, by using molecular simulation, we describe the interactions of chemically-propelled microtori near a wall. The results show that a torus hovers at a certain distance from the wall due to a combination of gravity and hydrodynamic flows generated by the chemical activity. Moreover, electrostatic dipolar interactions between the torus and the wall result in a spontaneous tilt and horizontal translation, in a qualitative agreement with the experiment. Simulations of the dynamics of two tori near a wall provide evidence for the formation of stable self-propelled bound states. Our results illustrate that self-organization at the microscale occurs due to a combination of multiple factors, including hydrodynamic, chemical, and electrostatic interactions.


2021 ◽  
Vol 344 ◽  
pp. 117741
Author(s):  
Minchul Sung ◽  
Dae Hyun Shin ◽  
Hyo Jung Lee ◽  
Kyoung Hee Jang ◽  
Kyounghee Shin ◽  
...  

2021 ◽  
Author(s):  
Paula Mellado

Abstract We study a simple magnetic system composed of periodically modulated magnetic dipoles with an easy axis. Upon adjusting the modulation amplitude alone, chains and two-dimensional stacked chains exhibit a rich magnon spectrum where frequency gaps and magnon speeds are easily manipulable. The blend of anisotropy due to dipolar interactions between magnets and geometrical modulation induces a magnetic phase with fractional Zak number in infinite chains and end states in open one-dimensional systems. In two dimensions it gives rise to topological modes at the edges of stripes. Tuning the amplitude in two-dimensional lattices causes a band touching, which triggers the exchange of the Chern numbers of the volume bands and switches the sign of the thermal conductivity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3042
Author(s):  
Hafsa Khurshid ◽  
Rahana Yoosuf ◽  
Bashar Afif Issa ◽  
Atta G. Attaelmanan ◽  
George Hadjipanayis

Cobalt nanowires have been synthesized by electrochemical deposition using track-etched anodized aluminum oxide (AAO) templates. Nanowires with varying spacing-to-diameter ratios were prepared, and their magnetic properties were investigated. It is found that the nanowires’ easy magnetization direction switches from parallel to perpendicular to the nanowire growth direction when the nanowire’s spacing-to-diameter ratio is reduced below 0.7, or when the nanowires’ packing density is increased above 5%. Upon further reduction in the spacing-to-diameter ratio, nanowires’ magnetic properties exhibit an isotropic behavior. Apart from shape anisotropy, strong dipolar interactions among nanowires facilitate additional uniaxial anisotropy, favoring an easy magnetization direction perpendicular to their growth direction. The magnetic interactions among the nanowires were studied using the standard method of remanence curves. The demagnetization curves and Delta m (Δm) plots showed that the nanowires interact via dipolar interactions that act as an additional uniaxial anisotropy favoring an easy magnetization direction perpendicular to the nanowire growth direction. The broadening of the dipolar component of Δm plots indicate an increase in the switching field distribution with the increase in the nanowires’ diameter. Our findings provide an important insight into the magnetic behavior of cobalt nanowires, meaning that it is crucial to design them according to the specific requirements for the application purposes.


Author(s):  
G M Wysin

Abstract The uniform states of a model for one-dimensional chains of thin magnetic islands on a nonmagnetic substrate coupled via dipolar interactions are described here. Magnetic islands oriented with their long axes perpendicular to the chain direction are assumed, whose shape anisotropy imposes a preference for the dipoles to point perpendicular to the chain. The competition between anisotropy and dipolar interactions leads to three types of uniform states of distinctly different symmetries, including metastable transverse or remanent states, transverse antiferromagnetic states, and longitudinal states where all dipoles align with the chain direction. The stability limits and normal modes of oscillation are found for all three types of states, even including infinite range dipole interactions. The normal mode frequencies are shown to be determined from the eigenvalues of the stability problem.


2021 ◽  
Vol 104 (10) ◽  
Author(s):  
C. Pellet-Mary ◽  
P. Huillery ◽  
M. Perdriat ◽  
G. Hétet

Sign in / Sign up

Export Citation Format

Share Document