scholarly journals Top-down flow of visual spatial attention signals from parietal to occipital cortex

2009 ◽  
Vol 9 (13) ◽  
pp. 18-18 ◽  
Author(s):  
T. Z. Lauritzen ◽  
M. D'Esposito ◽  
D. J. Heeger ◽  
M. A. Silver
2008 ◽  
Vol 28 (40) ◽  
pp. 10056-10061 ◽  
Author(s):  
S. L. Bressler ◽  
W. Tang ◽  
C. M. Sylvester ◽  
G. L. Shulman ◽  
M. Corbetta

Author(s):  
Anna C. (Kia) Nobre ◽  
M-Marsel Mesulam

Selective attention is essential for all aspects of cognition. Using the paradigmatic case of visual spatial attention, we present a theoretical account proposing the flexible control of attention through coordinated activity across a large-scale network of brain areas. It reviews evidence supporting top-down control of visual spatial attention by a distributed network, and describes principles emerging from a network approach. Stepping beyond the paradigm of visual spatial attention, we consider attentional control mechanisms more broadly. The chapter suggests that top-down biasing mechanisms originate from multiple sources and can be of several types, carrying information about receptive-field properties such as spatial locations or features of items; but also carrying information about properties that are not easily mapped onto receptive fields, such as the meanings or timings of items. The chapter considers how selective biases can operate on multiple slates of information processing, not restricted to the immediate sensory-motor stream, but also operating within internalized, short-term and long-term memory representations. Selective attention appears to be a general property of information processing systems rather than an independent domain within our cognitive make-up.


NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S66
Author(s):  
JB Ewen ◽  
DM Caggiano ◽  
BM Lakshmanan ◽  
H Rosen ◽  
S Yantis

2008 ◽  
Vol 69 (3) ◽  
pp. 215
Author(s):  
S. Kehrer ◽  
A. Kraft ◽  
K. Irlbacher ◽  
S.P. Koch ◽  
H. Hagendorf ◽  
...  

2001 ◽  
Vol 15 (1) ◽  
pp. 22-34 ◽  
Author(s):  
D.H. de Koning ◽  
J.C. Woestenburg ◽  
M. Elton

Migraineurs with and without aura (MWAs and MWOAs) as well as controls were measured twice with an interval of 7 days. The first session of recordings and tests for migraineurs was held about 7 hours after a migraine attack. We hypothesized that electrophysiological changes in the posterior cerebral cortex related to visual spatial attention are influenced by the level of arousal in migraineurs with aura, and that this varies over the course of time. ERPs related to the active visual attention task manifested significant differences between controls and both types of migraine sufferers for the N200, suggesting a common pathophysiological mechanism for migraineurs. Furthermore, migraineurs without aura (MWOAs) showed a significant enhancement for the N200 at the second session, indicating the relevance of time of measurement within migraine studies. Finally, migraineurs with aura (MWAs) showed significantly enhanced P240 and P300 components at central and parietal cortical sites compared to MWOAs and controls, which seemed to be maintained over both sessions and could be indicative of increased noradrenergic activity in MWAs.


Sign in / Sign up

Export Citation Format

Share Document