scholarly journals Observed Feedback between Winter Sea Ice and the North Atlantic Oscillation

2009 ◽  
Vol 22 (22) ◽  
pp. 6021-6032 ◽  
Author(s):  
Courtenay Strong ◽  
Gudrun Magnusdottir ◽  
Hal Stern

Abstract Feedback between the North Atlantic Oscillation (NAO) and winter sea ice variability is detected and quantified using approximately 30 years of observations, a vector autoregressive model (VAR), and testable definitions of Granger causality and feedback. Sea ice variability is quantified based on the leading empirical orthogonal function of sea ice concentration over the North Atlantic [the Greenland Sea ice dipole (GSD)], which, in its positive polarity, has anomalously high sea ice concentrations in the Labrador Sea region to the southwest of Greenland and low sea ice concentrations in the Barents Sea region to the northeast of Greenland. In weekly data for December through April, the VAR indicates that NAO index (N) anomalies cause like-signed anomalies of the standardized GSD index (G), and that G anomalies in turn cause oppositely signed anomalies of N. This negative feedback process operates explicitly on lags of up to four weeks in the VAR but can generate more persistent effects because of the autocorrelation of G. Synthetic data are generated with the VAR to quantify the effects of feedback following realistic local maxima of N and G, and also for sustained high values of G. Feedback can change the expected value of evolving system variables by as much as a half a standard deviation, and the relevance of these results to intraseasonal and interannual NAO and sea ice variability is discussed.

2017 ◽  
Vol 50 (1-2) ◽  
pp. 443-443 ◽  
Author(s):  
Mihaela Caian ◽  
Torben Koenigk ◽  
Ralf Döscher ◽  
Abhay Devasthale

2021 ◽  
Vol 2 (1) ◽  
pp. 1-17
Author(s):  
Lilian Schuster ◽  
Fabien Maussion ◽  
Lukas Langhamer ◽  
Gina E. Moseley

Abstract. Temperature in northeast Greenland is expected to rise at a faster rate than the global average as a consequence of anthropogenic climate change. Associated with this temperature rise, precipitation is also expected to increase as a result of increased evaporation from a warmer and ice-free Arctic Ocean. In recent years, numerous palaeoclimate projects have begun working in the region with the aim of improving our understanding of how this highly sensitive region responds to a warmer world. However, a lack of meteorological stations within the area makes it difficult to place the palaeoclimate records in the context of present-day climate. This study aims to improve our understanding of precipitation and moisture source dynamics over a small arid region located at 80∘ N in northeast Greenland. The origin of water vapour for precipitation over the study region is detected by a Lagrangian moisture source diagnostic, which is applied to reanalysis data from the European Centre for Medium-Range Weather Forecasts (ERA-Interim) from 1979 to 2017. While precipitation amounts are relatively constant during the year, the regional moisture sources display a strong seasonality. The most dominant winter moisture sources are the North Atlantic above 45∘ N and the ice-free Atlantic sector of the Arctic Ocean, while in summer the patterns shift towards local and north Eurasian continental sources. During the positive phases of the North Atlantic Oscillation (NAO), evaporation and moisture transport from the Norwegian Sea are stronger, resulting in larger and more variable precipitation amounts. Testing the hypothesis that retreating sea ice will lead to an increase in moisture supply remains challenging based on our data. However, we found that moisture sources are increasing in the case of retreating sea ice for some regions, in particular in October to December. Although the annual mean surface temperature in the study region has increased by 0.7 ∘C per decade (95 % confidence interval [0.4, 1.0] ∘C per decade) according to ERA-Interim data, we do not detect any change in the amount of precipitation with the exception of autumn where precipitation increases by 8.2 [0.8, 15.5] mm per decade over the period. This increase is consistent with future predicted Arctic precipitation change. Moisture source trends for other months and regions were non-existent or small.


2020 ◽  
Author(s):  
Lilian Schuster ◽  
Fabien Maussion ◽  
Lukas Langhamer ◽  
Gina E. Moseley

Abstract. Temperature in northeast Greenland is expected to rise at a faster rate than the global average as consequence of anthropogenic climate change. Associated with this temperature rise, precipitation is also expected to increase as a result of increased evaporation from a warmer and ice-free Arctic Ocean. In recent years, numerous palaeoclimate projects have begun working in the region with the aim of improving our understanding of how this highly-sensitive region responds to a warmer world. However, a lack of meteorological stations within the area makes it difficult to place the palaeoclimate records in the context of present-day climate. This study aims to improve our understanding of precipitation and moisture source dynamics over a small arid region located at 80° N in northeast Greenland. The origin of water vapour for precipitation over the study region is detected by a Lagrangian moisture source diagnostic, which is applied to reanalysis data from the European Centre for Medium-Range Weather Forecasts (ERA-Interim) from 1979 to 2017. While precipitation amounts are relatively constant during the year, the regional moisture sources display a strong seasonality. The most dominant winter moisture sources are the North Atlantic above 45° N and the ice-free Atlantic sector of the Arctic Ocean, while in summer the patterns shift towards local and north Eurasian continental sources. During the positive phases of the North Atlantic Oscillation (NAO), evaporation and moisture transport from the Norwegian Sea is stronger, resulting in larger and more variable precipitation amounts. Testing the hypothesis that retreating sea ice will lead to increase in moisture supply remains challenging based on our data. However, we found that moisture sources are increasing in case of retreating sea ice for some regions, in particular in October to December. Although the annual mean surface temperature in the study region has increased by 0.7 °C dec-1 (95 % confidence interval [0.4, 1.0] °C dec-1) according to ERA-Interim data, we do not detect any change in the amount of precipitation with the exception of autumn where precipitation increases by 8.2 [0.8, 15.5] mm dec-1 over the period. This increase is consistent with future predicted Arctic precipitation change. Moisture source trends for other months and regions were non-existent or small.


2017 ◽  
Vol 50 (1-2) ◽  
pp. 423-441 ◽  
Author(s):  
Mihaela Caian ◽  
Torben Koenigk ◽  
Ralf Döscher ◽  
Abhay Devasthale

Sign in / Sign up

Export Citation Format

Share Document