moisture source
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 63)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Vol 26 (1) ◽  
pp. 117-127
Author(s):  
Tao Xu ◽  
Hongxi Pang ◽  
Zhaojun Zhan ◽  
Wangbin Zhang ◽  
Huiwen Guo ◽  
...  

Abstract. In the East Asian monsoon region, winter extreme precipitation events occasionally occur and bring great social and economic losses. From December 2018 to February 2019, southeastern China experienced a record-breaking number of extreme precipitation events. In this study, we analyzed the variation in water vapor isotopes and their controlling factors during the extreme precipitation events in Nanjing, southeastern China. The results show that the variations in water vapor isotopes are closely linked to the change in moisture sources. Using a water vapor d-excess-weighted trajectory model, we identified the following five most important moisture source regions: South China, the East China Sea, the South China Sea, the Bay of Bengal, and continental regions (northwestern China and Mongolia). Moreover, the variations in water vapor d excess during a precipitation event reflect rapid shifts in the moisture source regions. These results indicate that rapid shifts among multiple moisture sources are important conditions for sustaining wintertime extreme precipitation events over extended periods.


2022 ◽  
Vol 3 (1) ◽  
pp. 1-20
Author(s):  
Lukas Papritz ◽  
David Hauswirth ◽  
Katharina Hartmuth

Abstract. A substantial portion of the moisture transport into the Arctic occurs in episodic, high-amplitude events with strong impacts on the Arctic's climate system components such as sea ice. This study focuses on the origin of such moist-air intrusions during winter and examines the moisture sources, moisture transport pathways, and their linkage to the driving large-scale circulation patterns. For that purpose, 597 moist-air intrusions, defined as daily events of intense (exceeding the 90th anomaly percentile) zonal mean moisture transport into the polar cap (≥70∘ N), are identified. Kinematic backward trajectories combined with a Lagrangian moisture source diagnostic are then used to pinpoint the moisture sources and characterize the airstreams accomplishing the transport. The moisture source analyses show that the bulk of the moisture transported into the polar cap during these moist-air intrusions originates in the eastern North Atlantic with an uptake maximum poleward of 50∘ N. Trajectories further reveal an inverse relationship between moisture uptake latitude and the level at which moisture is injected into the polar cap, consistent with ascent of poleward-flowing air in a baroclinic atmosphere. Focusing on intrusions in the North Atlantic (424 intrusions), we find that lower tropospheric moisture transport is predominantly accomplished by two types of airstreams: (i) cold, polar air warmed and moistened by surface fluxes and (ii) air subsiding from the mid-troposphere into the boundary layer. Both airstreams contribute about 36 % each to the total transport. The former accounts for most of the moisture transport during intrusions associated with an anomalously high frequency of cyclones east of Greenland (218 intrusions), whereas the latter is more important in the presence of atmospheric blocking over Scandinavia and the Ural Mountains (145 events). Long-range moisture transport, accounting for 17 % of the total transport, dominates during intrusions with weak forcing by baroclinic weather systems (64 intrusions). Finally, mid-tropospheric moisture transport is invariably associated with (diabatically) ascending air and moisture origin in the central and western North Atlantic, including the Gulf Stream front, accounting for roughly 10 % of the total transport. In summary, our study shows that moist-air intrusions into the polar atmosphere result from a combination of airstreams with predominantly high-latitude or high-altitude origin, whose relative importance is determined by the underlying driving weather systems (i.e., cyclones and blocks).


2021 ◽  
Vol 9 ◽  
Author(s):  
Ye Tian ◽  
Haiwei Zhang ◽  
Rui Zhang ◽  
Fan Zhang ◽  
Zeyuan Liang ◽  
...  

Speleothem calcite stable oxygen isotope (δ18OC) is one of the most widely used proxies in paleoclimate research, and understanding its seasonal-annual variability is very significant for palaeoclimate reconstruction. Five-year precipitation and karst cave water from 2016 to 2021 were monitored in Shennong cave, Jiangxi Province, Southeast China. The local meteoric water line (LMWL) is δD = 8.20 × δ18O + 13.34, which is similar to the global meteoric water line. The stable hydrogen and oxygen isotope (δD and δ18O) characteristics of precipitation and cave water were studied. δ18O and δD of precipitation and cave water show obvious seasonal variations. Lower precipitation δ18O and δD generally occur during summer and autumn compared with higher δ18O and δD values during winter and spring. Meanwhile, low precipitation δ18O values do not only appear in June–July when precipitation is the highest of the year but also appear in August–September when precipitation is limited. The back-trajectory analysis of monsoon precipitation moisture sources shows that the moisture uptake regions vary little on inter-annual scales; the water vapor of rainfall in June–July comes from the South China Sea and the Bay of Bengal, while the moisture source in August–September is mainly from the West Pacific and local area. The El Niño-Southern Oscillation is an important factor affecting the value of δ18O by modulating the percentage of summer monsoon precipitation in the annual precipitation and moisture source. The relationship between amount-weighted monthly mean precipitation δ18O and Niño-3.4 index shows that the East Asian summer monsoon (EASM) intensifies during La Niña phases, resulting in more precipitation in monsoon season (May to September, MJJAS) and lower δ18O values, and vice versa during El Niño phases.


Abstract Long-term continuous monitoring of precipitation isotopes has great potential to advance our understanding of hydrometeorological processes that determine stable isotope variability in the monsoon regions. This study presents 4–year daily precipitation isotopes from Yungui Plateau in southwestern China that is influenced by Indian summer monsoon and East Asian monsoon. The local meteoric water line (LMWL, δ2H=8.12 δ18O+11.2) was firstly established at the Tengchong (TC) site, which was close to the global meteoric water line (GMWL, δ2H=8 δ18O+10) indicating little secondary sub–cloud evaporation in the falling rain. Precipitation δ18O values exhibited significant inverse relationships with precipitation amount (r = −0.42), air temperature (r = −0.43), and relative humidity (r = −0.41) with lower correlation coefficients throughout the entire period, which indicated that precipitation isotopic variability in TC could not be well explained by the local meteorological factors but influenced by other combined factors of regional precipitation amount and upstream rainout. Precipitation δ18O values showed a clear V–shaped trend throughout the observation period, characterized by higher δ18O values during the pre–monsoon period whereas lower values during the post–monsoon period. This seasonal variation of precipitation δ18O values was associated with the seasonal movement of the Intertropical convergence zone and seasonal changes in moisture transport. Combined with backward trajectory analysis, precipitation δ18O values were estimated by a Rayleigh distillation model showing that upstream rainout processes from Bay of Bengal (BoB) towards land (Myanmar), and recycling moisture over land were key factors affecting the isotopic compositions of the TC precipitation. These findings could enhance our understanding of atmospheric dynamics and moisture source in the monsoon regions and will potentially facilitate the interpretation of numerous isotopic proxy records from this region.


2021 ◽  
Author(s):  
A. Landais ◽  
B. Stenni ◽  
V. Masson-Delmotte ◽  
J. Jouzel ◽  
A. Cauquoin ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Qin Hu ◽  
Yong Zhao ◽  
Anning Huang ◽  
Pan Ma ◽  
Jing Ming

Based on the output data from the Lagrangian flexible particle dispersion model (FLEXPART), we analyze the pathways of moisture to identify the moisture source areas for extreme precipitation in the summer half-year (April–September) over northern and southern Xinjiang, respectively. For both northern and southern Xinjiang, the local evaporation plays a decisive role for extreme precipitation in the summer half-year, of which contribution ratio accounts for 24.5% to northern Xinjiang and 30.2% to southern Xinjiang of all identified source areas. In addition, central Asia and northwestern Asia are the major moisture source areas as well and contribute similarly to extreme precipitation relative to local evaporation. For northern Xinjiang, central Asia surpasses northwestern Asia, and each of them contributes 24.1 and 18.8%, whereas northwestern Asia is somewhat more crucial than central Asia for southern Xinjiang, accounting 22.1 and 19.1%, respectively. Note that the three top-ranked moisture source areas make up a large proportion of total sources. Regarding the remaining source areas that also provide moisture, the contributions are entirely different for southern and northern Xinjiang. Originating from the North Atlantic Ocean, Europe, and the Mediterranean Sea, some water vapor enters northern Xinjiang and converge to precipitate, while this process is barely detectable for extreme precipitation over southern Xinjiang, which is affected by the westerly flow. On the contrary, the Arabian Sea, the Arabian Peninsula, and the Indian Peninsula contribute, even though slightly, to extreme precipitation over southern Xinjiang, which indicates that the meridional transport pathways from the Arabian Sea can carry moisture to this inland region.


Author(s):  
Owen C. Cowling ◽  
Elizabeth K. Thomas ◽  
John Inge Svendsen ◽  
Jan Mangerud ◽  
Haflidi Haflidason ◽  
...  

Author(s):  
Devon B. Gorbey ◽  
Elizabeth K. Thomas ◽  
Sarah E. Crump ◽  
Kayla V. Hollister ◽  
Martha K. Raynolds ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document