scholarly journals Does Model Parameter Error Cause a Significant “Spring Predictability Barrier” for El Niño Events in the Zebiak–Cane Model?

2012 ◽  
Vol 25 (4) ◽  
pp. 1263-1277 ◽  
Author(s):  
Yanshan Yu ◽  
Mu Mu ◽  
Wansuo Duan

Abstract Within the framework of the Zebiak–Cane model, the approach of conditional nonlinear optimal perturbation (CNOP) is used to study the effect of model parameter errors on El Niño–Southern Oscillation (ENSO) predictability. The optimal model parameter errors are obtained within a reasonable error bound (i.e., CNOP-P errors), which have the largest effect on the results of El Niño predictions. The resultant prediction errors were investigated in depth. The CNOP-P errors do not cause a noticeable prediction error of the sea surface temperature anomaly averaged over the Niño-3 region and do not show an obvious season-dependent evolution of the prediction errors. Consequently, the CNOP-P errors do not cause a significant spring predictability barrier (SPB) for El Niño events. In contrast, the initial errors that have the largest effect on the results of the predictions (i.e., the CNOP-I errors) show a season-dependent evolution, with the largest error increase in spring, and also cause a large prediction error, thereby generating a significant SPB. The initial errors play a more important role than the parameter errors in generating a significant SPB for El Niño events. To further validate this result, the authors investigated the situation in which CNOP-I and CNOP-P errors are simultaneously superimposed in the model, which may be a more credible approach because the initial errors and model parameter errors coexist under realistic predictions. The combined mode of CNOP-I and CNOP-P errors shows a similar season-dependent evolution to that of CNOP-I errors and yields a large prediction error, thereby inducing a significant SPB. The inference, therefore, is that initial errors play a more important role than model parameter errors in generating a significant SPB for El Niño predictions of the Zebiak–Cane model. This result helps to clarify the roles of the initial error and parameter error in the development of an SPB, and highlights the role of initial errors, which demonstrates that the SPB could be markedly reduced by improving the initial conditions. The results provide a theoretical basis for improving data assimilation in ENSO predictions.

2021 ◽  
Author(s):  
Hui Xu ◽  
Lei Chen ◽  
Wansuo Duan

AbstractThe optimally growing initial errors (OGEs) of El Niño events are found in the Community Earth System Model (CESM) by the conditional nonlinear optimal perturbation (CNOP) method. Based on the characteristics of low-dimensional attractors for ENSO (El Niño Southern Oscillation) systems, we apply singular vector decomposition (SVD) to reduce the dimensions of optimization problems and calculate the CNOP in a truncated phase space by the differential evolution (DE) algorithm. In the CESM, we obtain three types of OGEs of El Niño events with different intensities and diversities and call them type-1, type-2 and type-3 initial errors. Among them, the type-1 initial error is characterized by negative SSTA errors in the equatorial Pacific accompanied by a negative west–east slope of subsurface temperature from the subsurface to the surface in the equatorial central-eastern Pacific. The type-2 initial error is similar to the type-1 initial error but with the opposite sign. The type-3 initial error behaves as a basin-wide dipolar pattern of tropical sea temperature errors from the sea surface to the subsurface, with positive errors in the upper layers of the equatorial eastern Pacific and negative errors in the lower layers of the equatorial western Pacific. For the type-1 (type-2) initial error, the negative (positive) temperature errors in the eastern equatorial Pacific develop locally into a mature La Niña (El Niño)-like mode. For the type-3 initial error, the negative errors in the lower layers of the western equatorial Pacific propagate eastward with Kelvin waves and are intensified in the eastern equatorial Pacific. Although the type-1 and type-3 initial errors have different spatial patterns and dynamic growing mechanisms, both cause El Niño events to be underpredicted as neutral states or La Niña events. However, the type-2 initial error makes a moderate El Niño event to be predicted as an extremely strong event.


2021 ◽  
Author(s):  
Shouwen Zhang ◽  
Hui Wang ◽  
Hua Jiang ◽  
Wentao Ma

AbstractThe late spring rainfall may account for 15% of the annual total rainfall, which is crucial to early planting in southeastern China. A better understanding of the precipitation variations in the late spring and its predictability not only greatly increase our knowledge of related mechanisms, but it also benefits society and the economy. Four models participating in the North American Multi-Model Ensemble (NMME) were selected to study their abilities to forecast the late spring rainfall over southeastern China and the major sources of heavy rainfall from the perspective of the sea surface temperature (SST) field. We found that the models have better abilities to forecast the heavy rainfall over the middle and lower reaches of the Yangtze River region (MLYZR) with only a 1-month lead time, but they failed for a 3-month lead time since the occurrence of the heavy rainfall was inconsistent with the observations. The observations indicate that the warm SST anomalies in the tropical eastern Indian Ocean are vital to the simultaneously heavy rainfall in the MLYZR in May, but an El Niño event is not a necessary condition for determining the heavy rainfall over the MLYZR. The heavy rainfall over the MLYZR in May is always accompanied by warming of the northeastern Indian Ocean and of the northeastern South China Sea (NSCS) from April to May in the models and observations, respectively. In the models, El Niño events may promote the warming processes over the northeastern Indian Ocean, which leads to heavy rainfall in the MLYZR. However, in the real world, El Niño events are not the main reason for the warming of the NSCS, and further research on the causes of this warming is still needed.


Sign in / Sign up

Export Citation Format

Share Document