Investigating the Relative Contributions of Charge Deposition and Turbulence in Organizing Charge within a Thunderstorm

2018 ◽  
Vol 75 (9) ◽  
pp. 3265-3284 ◽  
Author(s):  
Matthew D. Brothers ◽  
Eric C. Bruning ◽  
Edward R. Mansell

Abstract Large-eddy-resolving simulations using the Collaborative Model for Multiscale Atmospheric Simulation (COMMAS), which contains microphysical charging and branched-lightning parameterizations, produce much more complex net charge structures than conventionally visualized from previous observations, simulations, and conceptual diagrams. Many processes contribute to the hydrometeor charge budget within a thunderstorm, including advection, hydrometeor differential sedimentation, subgrid turbulent mixing and diffusion, ion drift, microphysical separation, and the attachment of ion charge deposited by the lightning channel. The lightning deposition, sedimentation, and noninductive charging tendencies contribute the most overall charge at relatively large scales, while the advection tendency, from resolved turbulence, provides the most “texture” at small scales to the net charge density near the updraft region of the storm. The scale separation increases for stronger storm simulations. In aggregate, lightning deposition and sedimentation resemble the smoother distribution of the electric potential, while evidence suggests individual flashes could be responding to the fine texture in the net charge. The clear scale separation between the advection and other net charge tendencies suggest the charge advection is most capable of providing net charge texture; however, a clear-cut causality is not obtained from this study.

2011 ◽  
Vol 47 (1) ◽  
pp. 65-74 ◽  
Author(s):  
J. Berland ◽  
P. Lafon ◽  
F. Daude ◽  
F. Crouzet ◽  
C. Bogey ◽  
...  

2021 ◽  
Author(s):  
Gregory Wagner ◽  
Andre Souza ◽  
Adeline Hillier ◽  
Ali Ramadhan ◽  
Raffaele Ferrari

<p>Parameterizations of turbulent mixing in the ocean surface boundary layer (OSBL) are key Earth System Model (ESM) components that modulate the communication of heat and carbon between the atmosphere and ocean interior. OSBL turbulence parameterizations are formulated in terms of unknown free parameters estimated from observational or synthetic data. In this work we describe the development and use of a synthetic dataset called the “LESbrary” generated by a large number of idealized, high-fidelity, limited-area large eddy simulations (LES) of OSBL turbulent mixing. We describe how the LESbrary design leverages a detailed understanding of OSBL conditions derived from observations and large scale models to span the range of realistically diverse physical scenarios. The result is a diverse library of well-characterized “synthetic observations” that can be readily assimilated for the calibration of realistic OSBL parameterizations in isolation from other ESM model components. We apply LESbrary data to calibrate free parameters, develop prior estimates of parameter uncertainty, and evaluate model errors in two OSBL parameterizations for use in predictive ESMs.</p>


2018 ◽  
Vol 76 (1) ◽  
pp. 113-133 ◽  
Author(s):  
Fabian Hoffmann ◽  
Takanobu Yamaguchi ◽  
Graham Feingold

Abstract Although small-scale turbulent mixing at cloud edge has substantial effects on the microphysics of clouds, most models do not represent these processes explicitly, or parameterize them rather crudely. This study presents a first use of the linear eddy model (LEM) to represent unresolved turbulent mixing at the subgrid scale (SGS) of large-eddy simulations (LESs) with a coupled Lagrangian cloud model (LCM). The method utilizes Lagrangian particles to provide the trajectory of air masses within LES grid boxes, while the LEM is used to redistribute these air masses among the Lagrangian particles based on the local features of turbulence, allowing for the appropriate representation of inhomogeneous to homogeneous SGS mixing. The new approach has the salutary effect of mitigating spurious supersaturations. At low turbulence intensities, as found in the early stages of an idealized bubble cloud simulation, cloud-edge SGS mixing tends to be inhomogeneous and the new approach is shown to be essential for the production of raindrop embryos. At higher turbulence intensities, as found in a field of shallow cumulus, SGS mixing tends to be more homogeneous and the new approach does not significantly alter the results, indicating that a grid spacing of 20 m may be sufficient to resolve all relevant scales of inhomogeneous mixing. In both cases, droplet in-cloud residence times are important for the production of precipitation embryos in the absence of small-scale inhomogeneous mixing, either naturally due to strong turbulence or artificially as a result of coarse resolution or by not using the LEM as an SGS model.


Author(s):  
F. F. Grinstein ◽  
A. A. Gowardhan ◽  
J. R. Ristorcelli

Under-resolved computer simulations are typically unavoidable in practical turbulent flow applications exhibiting extreme geometrical complexity and a broad range of length and time scales. An important unsettled issue is whether filtered-out and subgrid spatial scales can significantly alter the evolution of resolved larger scales of motion and practical flow integral measures. Predictability issues in implicit large eddy simulation of under-resolved mixing of material scalars driven by under-resolved velocity fields and initial conditions are discussed in the context of shock-driven turbulent mixing. The particular focus is on effects of resolved spectral content and interfacial morphology of initial conditions on transitional and late-time turbulent mixing in the fundamental planar shock-tube configuration.


Sign in / Sign up

Export Citation Format

Share Document