ion drift
Recently Published Documents


TOTAL DOCUMENTS

324
(FIVE YEARS 50)

H-INDEX

34
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Filippos Sofos ◽  
Theodoros E. Karakasidis ◽  
Ioannis E. Sarris

AbstractMolecular dynamics simulations are employed to estimate the effect of nanopore size, wall wettability, and the external field strength on successful ion removal from water solutions. It is demonstrated that the presence of ions, along with the additive effect of an external electric field, constitute a multivariate environment that affect fluidic interactions and facilitate, or block, ion drift to the walls. The potential energy is calculated across every channel case investigated, indicating possible ion localization, while electric field lines are presented, to reveal ion routing throughout the channel. The electric field strength is the dominant ion separation factor, while wall wettability strength, which characterizes if the walls are hydrophobic or hydrophilic has not been found to affect ion movement significantly at the scale studied here. Moreover, the diffusion coefficient values along the three dimensions are reported. Diffusion coefficients have shown a decreasing tendency as the external electric field increases, and do not seem to be affected by the degree of wall wettability at the scale investigated here.


2021 ◽  
Vol 39 (6) ◽  
pp. 961-974
Author(s):  
Johann Stamm ◽  
Juha Vierinen ◽  
Björn Gustavsson

Abstract. Measurements of height-dependent electric field (E) and neutral wind (u) are important governing parameters of the Earth's upper atmosphere, which can be used to study, for example, how auroral currents close or how energy flows between the ionized and neutral constituents. The new EISCAT 3D (E3D) incoherent scatter radar will be able to measure a three-dimensional ion velocity vector (v) at each measurement point, which will allow less stringent prior assumptions about E and u to be made when estimating them from radar measurements. This study investigates the feasibility of estimating the three-dimensional electric field and neutral wind vectors along a magnetic field-aligned profile from E3D measurements, using the ion momentum equation and Maxwell's equations. The uncertainty of ion drift measurements is estimated for a time and height resolution of 5 s and 2 km. With the most favourable ionospheric conditions, the ion wind at E region peak can be measured with an accuracy of less than 1 m/s. In the worst case, during a geomagnetically quiet night, the uncertainty increases by a factor of around 10. The uncertainty of neutral wind and electric field estimates is found to be strongly dependent on the prior constraints imposed on them. In the lower E region, neutral wind estimates have a lower standard deviation than 10 m/s in the most favourable conditions. In such conditions, also the F region electric field can be estimated with uncertainty of about 1 mV/m. Simulated measurements of v are used to demonstrate the ability to resolve the field-aligned profile of E and u. However, they can only be determined well at the heights where they dominate the ion drift, that is above 125 km for E and below 115 km for u. At the other heights, the results are strongly dependent on the prior assumptions of smoothness.


2021 ◽  
Author(s):  
Jiahui Hu ◽  
Aurora López Rubio ◽  
Alex Chartier ◽  
Gary S. Bust ◽  
Seebany Datta-Barua

Author(s):  
Mai M. Goda ◽  
Ahmed H. Hassan ◽  
Hassan Mostafa ◽  
Ahmed M. Soliman

Neuromorphic systems are the future computing systems to overcome the von Neumann’s power consumption and latency wall between memory and processing units. The two main components of any neuromorphic computing system are neurons and synapses. Synapses carry the weight of the system to be multiplied by the neuromorphic attributes, which represent the features of the task to be solved. Memristor (memoryresistor) is the most suitable circuit element to act as a synapse. Its ability to store, update and do matrix multiplication in nanoscale die area makes it very useful in neuromorphic synapses. One of the most popular memristor synapse configurations is the two-transistor–one-memristor (2T1M) synapse. This configuration is very useful in neuromorphic synapses for its ability to control reading and updating the weight on a chip by signals. The main problem with this synapse is that the reading operation is destructive, which results in changing the stored weight value. In this paper, a novel refreshment circuit is proposed to restore the correct weight in case of any destructive reading operations. The circuit makes a small interrupt time during operation without disconnecting the memristor, which makes the circuit very practical. The circuit has been simulated by using hardware-calibrated CMOS TSMC 130[Formula: see text]nm technology on Cadence Virtuoso and linear ion drift memristor Verilog-A model. The proposed circuit achieves the refreshment task accurately for several error types. It is used to refresh 2T1M synapse with any destructive reading signal shape.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2185
Author(s):  
Vasileios Bartzis ◽  
Ioannis E. Sarris

Desalination and water purification through the ion drift of salted water flow due to an electric field in a duct is perhaps a feasible membrane-free technology. Here, the unsteady modulation of ion drift is treated by employing the Poison–Nernst–Plank (PNP) equations in the linear regime. Based on the solution of the PNP equations, the closed-form relationships of the charge density, the ion concentration, the electric field distribution and its potential are obtained as a function of position and time. It is found that the duration of the ion drift is of the order of one second or less. Moreover, the credibility of various electrical circuit models is examined and successfully compared with our solution. Then, the closed form of the surface charge density and the potential that are calculated without the linear approximation showed that the compact layer is crucial for the ion confinement near the duct walls. To test this, nonlinear solutions of the PNP equations are obtained, and the limits of accuracy of the linear theory is discussed. Our results indicate that the linear approximation gives accurate results only at the fluid’s bulk but not inside the double layer. Finally, the important issue of electric field diminishing at the fluid’s bulk is discussed, and a potential method to overcome this is proposed.


Author(s):  
John C. Foster ◽  
Philip J. Erickson

The geospace plume couples the ionosphere, plasmasphere, and magnetosphere from sub-auroral regions to the magnetopause, on polar field lines, and into the magnetotail. We describe Van Allen Probes observations of ionospheric O+ ions at altitudes of 3–6 RE in the near vicinity of the geospace plume in the noon and post-noon sector. The temporal variation of warm ion fluxes observed as a function of time on a moving spacecraft is complicated by changing spacecraft position and complex ion drift paths and velocities that are highly sensitive to ion energy, pitch angle and L value. In the “notch” region of lower density plasma outside the morning-side plasmapause, bi-directionally field aligned fluxes of lower energy (<5 keV) ions, following corotation-dominated drift trajectories from the midnight sector, are excluded from geospace plume field lines as they are deflected sunward in the plume flow channel. In general, O+ at ring current energies (∼10 keV) is bi-directionally field aligned on plume field lines, while lower energy O+ (<3 keV) are absent. The observation of ion plumes with energies increasing from ∼1 keV–>20 keV in the dusk sector outer plasmasphere is interpreted as evidence for localized ionospheric O+ outflow at the outer edge of the geospace plume with subsequent O+ acceleration to >50 keV in <30 min during the ions’ sunward drift.


Particles ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 343-353
Author(s):  
Fernando Domingues Amaro ◽  
Elisabetta Baracchini ◽  
Luigi Benussi ◽  
Stefano Bianco ◽  
Cesidio Capoccia ◽  
...  

The CYGNO project aims at developing a high resolution Time Projection Chamber with optical readout for directional dark matter searches and solar neutrino spectroscopy. Peculiar CYGNO’s features are the 3D tracking capability provided by the combination of photomultipliers and scientific CMOS camera signals, combined with a helium-fluorine-based gas mixture at atmospheric pressure amplified by gas electron multipliers structures. In this paper, the performances achieved with CYGNO prototypes and the prospects for the upcoming underground installation at Laboratori Nazionali del Gran Sasso of a 50-L detector in fall 2021 will be discussed, together with the plans for a 1-m3 experiment. The synergy with the ERC consolidator, grant project INITIUM, aimed at realising negative ion drift operation within the CYGNO 3D optical approach, will be further illustrated.


2021 ◽  
Author(s):  
Johann Stamm ◽  
Juha Vierinen ◽  
Björn Gustavsson

Abstract. Measurements of height dependent electric field (E) and neutral wind (u) are important governing parameters of the Earth's upper atmosphere, which can be used to study e.g., how auroral currents close, or how energy flows between the ionized and neutral constituents. The new EISCAT 3D (E3D) incoherent scatter radar will be able to measure a three-dimensional ion velocity vector (v) at each measurement point, which will allow less stringent prior assumptions about E and u to be made when estimating them from radar measurements. This study investigates the feasibility of estimating the three-dimensional electric field and neutral wind vectors along a magnetic field-aligned altitude profile from E3D measurements, using the ion momentum equation and Maxwell's equations. The uncertainty of ion drift measurements is estimated for a time and height resolution of 5 s and 2 km. With the most favourable ionospheric conditions, the ion wind at E region peak can be measured with an accuracy of less than 1 m/s. In the worst case, during a geomagnetically quiet night, the uncertainty increases by a factor of around ten. The uncertainty of neutral wind and electric field estimates is found to be strongly dependent on the prior constraints imposed on them. In the lower E region, neutral wind estimates have a lower standard deviation than 10 m/s in the most favourable conditions. In such conditions, also the F region electric field can be estimated with uncertainty of about 1 mV/m. Simulated measurements of v are used to demonstrate the ability to resolve the field-aligned profile of E and u. However, they can only be determined well at the heights where they significantly influence the ion drift, that is above 125 km for E and below 115 km for u. At the other heights, the results are strongly dependent on the the prior assumptions of smoothness.


Sign in / Sign up

Export Citation Format

Share Document