scholarly journals Regional Energy and Water Cycles: Transports from Ocean to Land

2013 ◽  
Vol 26 (20) ◽  
pp. 7837-7851 ◽  
Author(s):  
Kevin E. Trenberth ◽  
John T. Fasullo

Abstract The flows of energy and water from ocean to land are examined in the context of the land energy and water budgets, for land as a whole and for continents. Most atmospheric reanalyses have large errors of up to 15 W m−2 in the top-of-atmosphere (TOA) energy imbalance, and none include volcanic eruptions. The flow of energy from ocean to land is more reliable as it relies on analyzed wind, temperature, and moisture fields. It is examined for transports of the total, latent energy (LE), and dry static energy (DSE) to land as a whole and as zonal means. The net convergence of energy onto land is balanced by the loss of energy at TOA, measured by Clouds and the Earth’s Radiant Energy System (CERES), and again there are notable discrepancies. Only the ECMWF Interim Re-Analysis (ERA-I) is stable and plausible. Strong compensation between variations in LE and DSE transports onto land means that their sum is more stable over time, and the net transport of energy onto land is largely that associated with the hydrological cycle (LE). A more detailed examination is given of the energy and water budgets for Eurasia, North and South America, Australia, and Africa, making use of Gravity Recovery and Climate Experiment (GRACE) data for water storage on land and data on river discharge into the ocean. With ERA-I, the new land estimates for both water and energy are closer to achieving balances than in previous studies. As well as the annual means, the mean annual cycles are examined in detail along with uncertainty sampling estimates, but the main test used here is that of closure.

2010 ◽  
Vol 23 (6) ◽  
pp. 1277-1290 ◽  
Author(s):  
John E. Harries ◽  
Claudio Belotti

Abstract Recent observations and model studies of the earth’s radiative energy balance have focused attention on the earth’s top of atmosphere (TOA) energy balance. This is the balance between the shortwave energy absorbed by the earth, which is represented by a spatially and temporally averaged absorbed flux , and the emitted longwave energy, which is represented by the corresponding averaged emitted flux . The TOA average net flux FN is defined as the difference between the two over the averaged area and time, which may be a local, regional, or global average. A global nonzero net flux represents a measure of imbalance between the energy being absorbed and emitted by the earth for the time interval in question. It is of interest to ask what the natural variability of the net flux might be and whether, during times of climate change, signals of important climate change processes might be detected against this natural background variation; examples of these signals include evidence of ocean heat storage, the effects of El Niño, and the radiative effects of volcanic eruptions. In this paper, the authors review the significance of the net flux, survey the observational evidence from a range of satellite instruments over several decades, and analyze some of the most recent observations from the Clouds and the Earth’s Radiant Energy System (CERES) program to determine what signals and what natural variability might be expected in the TOA net flux. Based on this analysis, the use of broadband radiation measurements for global climate change studies can be assessed.


2020 ◽  
Vol 80 (2) ◽  
pp. 147-163
Author(s):  
X Liu ◽  
Y Kang ◽  
Q Liu ◽  
Z Guo ◽  
Y Chen ◽  
...  

The regional climate model RegCM version 4.6, developed by the European Centre for Medium-Range Weather Forecasts Reanalysis, was used to simulate the radiation budget over China. Clouds and the Earth’s Radiant Energy System (CERES) satellite data were utilized to evaluate the simulation results based on 4 radiative components: net shortwave (NSW) radiation at the surface of the earth and top of the atmosphere (TOA) under all-sky and clear-sky conditions. The performance of the model for low-value areas of NSW was superior to that for high-value areas. NSW at the surface and TOA under all-sky conditions was significantly underestimated; the spatial distribution of the bias was negative in the north and positive in the south, bounded by 25°N for the annual and seasonal averaged difference maps. Compared with the all-sky condition, the simulation effect under clear-sky conditions was significantly better, which indicates that the cloud fraction is the key factor affecting the accuracy of the simulation. In particular, the bias of the TOA NSW under the clear-sky condition was <±10 W m-2 in the eastern areas. The performance of the model was better over the eastern monsoon region in winter and autumn for surface NSW under clear-sky conditions, which may be related to different levels of air pollution during each season. Among the 3 areas, the regional average biases overall were largest (negative) over the Qinghai-Tibet alpine region and smallest over the eastern monsoon region.


2006 ◽  
Author(s):  
Grant Matthews ◽  
Kory Priestley ◽  
Norman G. Loeb ◽  
Konstantin Loukachine ◽  
Susan Thomas ◽  
...  
Keyword(s):  

2004 ◽  
Vol 33 (7) ◽  
pp. 1125-1131 ◽  
Author(s):  
G.Louis Smith ◽  
Bruce A. Wielicki ◽  
Bruce R. Barkstrom ◽  
Robert B. Lee ◽  
Kory J. Priestley ◽  
...  
Keyword(s):  

2010 ◽  
Author(s):  
Susan Thomas ◽  
K. J. Priestley ◽  
N. M. Smith ◽  
N. G. Loeb ◽  
P. C. Hess ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (21) ◽  
pp. 4464
Author(s):  
Jiawen Xu ◽  
Xiaotong Zhang ◽  
Chunjie Feng ◽  
Shuyue Yang ◽  
Shikang Guan ◽  
...  

Surface upward longwave radiation (SULR) is an indicator of thermal conditions over the Earth’s surface. In this study, we validated the simulated SULR from 51 Coupled Model Intercomparison Project (CMIP6) general circulation models (GCMs) through a comparison with ground measurements and satellite-retrieved SULR from the Clouds and the Earth’s Radiant Energy System, Energy Balanced and Filled (CERES EBAF). Moreover, we improved the SULR estimations by a fusion of multiple CMIP6 GCMs using multimodel ensemble (MME) methods. Large variations were found in the monthly mean SULR among the 51 CMIP6 GCMs; the bias and root mean squared error (RMSE) of the individual CMIP6 GCMs at 133 sites ranged from −3 to 24 W m−2 and 22 to 38 W m−2, respectively, which were higher than those found between the CERES EBAF and GCMs. The CMIP6 GCMs did not improve the overestimation of SULR compared to the CMIP5 GCMs. The Bayesian model averaging (BMA) method showed better performance in simulating SULR than the individual GCMs and simple model averaging (SMA) method, with a bias of 0 W m−2 and an RMSE of 19.29 W m−2 for the 133 sites. In terms of the global annual mean SULR, our best estimation for the CMIP6 GCMs using the BMA method was 392 W m−2 during 2000–2014. We found that the SULR varied between 386 and 393 W m−2 from 1850 to 2014, exhibiting an increasing tendency of 0.2 W m−2 per decade (p < 0.05).


2021 ◽  
Author(s):  
Archana Devi ◽  
Sreedharan Krishnakumari Satheesh

Abstract. Single Scattering Albedo (SSA) is a leading contributor to the uncertainty in aerosol radiative impact assessments. Therefore accurate information on aerosol absorption is required on a global scale. In this study, we have applied a multi-satellite algorithm to retrieve SSA using the concept of ‘critical optical depth.’ Global maps of SSA were generated following this approach using spatially and temporally collocated data from Clouds and the Earth’s Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on board Terra and Aqua satellites. The method has been validated using the data from aircraft-based measurements of various field campaigns. The retrieval uncertainty is ±0.03 and depends on both the surface albedo and aerosol absorption. Global mean SSA estimated over land and ocean is 0.93 and 0.97, respectively. Seasonal and spatial distribution of SSA over various regions are also presented. The global maps of SSA, thus derived with improved accuracy, provide important input to climate models for assessing the climatic impact of aerosols on regional and global scales.


Sign in / Sign up

Export Citation Format

Share Document