scholarly journals Observed Low-Frequency Covariabilities between the Tropical Oceans and the North Atlantic Oscillation in the Twentieth Century

2006 ◽  
Vol 19 (6) ◽  
pp. 1032-1041 ◽  
Author(s):  
Martin P. King ◽  
Fred Kucharski

Abstract The low-frequency covariabilities of tropical sea surface temperature (SST) and the North Atlantic Oscillation (NAO) during twentieth-century winters are investigated by maximum covariance analysis (MCA) using reanalysis data. It was found that the positive NAO phase is positively correlated to an increase in tropical SST, especially during the recent decades. The western tropical Pacific SST displays high correlation with the NAO throughout the whole of the twentieth century. For this ocean region, the MCA homogeneous map has a SST spatial pattern with meridional gradients. It was also found that a cooling of tropical Atlantic SST is correlated with positive NAO. The influence of the tropical Atlantic SST on the NAO is strongest during the pre-1960s period.

2019 ◽  
Vol 32 (22) ◽  
pp. 7697-7712 ◽  
Author(s):  
Yu Nie ◽  
Hong-Li Ren ◽  
Yang Zhang

Abstract Considerable progress has been made in understanding the internal eddy–mean flow feedback in the subseasonal variability of the North Atlantic Oscillation (NAO) during winter. Using daily atmospheric and oceanic reanalysis data, this study highlights the role of extratropical air–sea interaction in the NAO variability during autumn when the daily sea surface temperature (SST) variability is more active and eddy–mean flow interactions are still relevant. Our analysis shows that a horseshoe-like SST tripolar pattern in the North Atlantic Ocean, marked by a cold anomaly in the Gulf Stream and two warm anomalies to the south of the Gulf Stream and off the western coast of northern Europe, can induce a quasi-barotropic NAO-like atmospheric response through eddy-mediated processes. An initial southwest–northeast tripolar geopotential anomaly in the North Atlantic forces this horseshoe-like SST anomaly tripole. Then the SST anomalies, through surface heat flux exchange, alter the spatial patterns of the lower-tropospheric temperature and thus baroclinicity anomalies, which are manifested as the midlatitude baroclinicity shifted poleward and reduced baroclinicity poleward of 70°N. In response to such changes of the lower-level baroclinicity, anomalous synoptic eddy generation, eddy kinetic energy, and eddy momentum forcing in the midlatitudes all shift poleward. Meanwhile, the 10–30-day low-frequency anticyclonic wave activities in the high latitudes decrease significantly. We illustrate that both the latitudinal displacement of midlatitude synoptic eddy activities and intensity variation of high-latitude low-frequency wave activities contribute to inducing the NAO-like anomalies.


2013 ◽  
Vol 70 (9) ◽  
pp. 2854-2874 ◽  
Author(s):  
Marie Drouard ◽  
Gwendal Rivière ◽  
Philippe Arbogast

Abstract Ingredients in the North Pacific flow influencing Rossby wave breakings in the North Atlantic and the intraseasonal variations of the North Atlantic Oscillation (NAO) are investigated using both reanalysis data and a three-level quasigeostrophic model on the sphere. First, a long-term run is shown to reproduce the observed relationship between the nature of the synoptic wave breaking and the phase of the NAO. Furthermore, a large-scale, low-frequency ridge anomaly is identified in the northeastern Pacific in the days prior to the maximum of the positive NAO phase both in the reanalysis and in the model. A large-scale northeastern Pacific trough anomaly is observed during the negative NAO phase but does not systematically precede it. Then, short-term linear and nonlinear simulations are performed to understand how the large-scale ridge anomaly can act as a precursor of the positive NAO phase. The numerical setup allows for analysis of the propagation of synoptic waves in the eastern Pacific in the presence of a large-scale ridge or trough anomaly and their downstream impact onto the Atlantic jet when they break. The ridge acts in two ways. First, it tends to prevent the downstream propagation of small waves compared to long waves. Second, it deflects the propagation of the wave trains in such a way that they mainly propagate equatorward in the Atlantic. The two modes of action favor the anticyclonic wave breaking and, therefore, the positive NAO phase. With the trough, the wave train propagation is more zonal, disturbances are more meridionally elongated, and cyclonic wave breaking is more frequent in the Atlantic than in the ridge case.


2019 ◽  
Vol 32 (19) ◽  
pp. 6285-6298 ◽  
Author(s):  
Javier Mellado-Cano ◽  
David Barriopedro ◽  
Ricardo García-Herrera ◽  
Ricardo M. Trigo ◽  
Armand Hernández

Abstract Recent studies have stressed the key role of the east Atlantic (EA) pattern and its interactions with the North Atlantic Oscillation (NAO) in Euro-Atlantic climate variability. However, instrumental records of these leading patterns of variability are short, hampering a proper characterization of the atmospheric circulation beyond the mid-nineteenth century. In this work, we present the longest (1685–2014) observational-based records of winter NAO and EA indices as well as estimates of the North Atlantic eddy-driven jet stream speed and latitude for the same period. The time series display large variability from interannual to multidecadal time scales, with, for example, positive (negative) EA (NAO) phases dominating before 1750 (during much of the nineteenth century). By identifying winters with different combinations of NAO/EA phases in the twentieth century, our results highlight the additional role of EA in shaping the North Atlantic action centers and the European climate responses to NAO. The EA interference with the NAO signal is stronger in precipitation than in temperature and affects areas with strong responses to NAO such as Greenland and the western Mediterranean, which prevents simplistic relationships of natural proxies with NAO. The last three centuries uncover multidecadal periods dominated by specific NAO/EA states and substantial interannual-to-centennial variability in the North Atlantic jet stream, thus providing new evidence of the dynamics behind some outstanding periods. Transitions in the NAO/EA phase space have been recurrent and pin down long-lasting anomalies, such as the displacement of the North Atlantic action centers in the late twentieth century, besides some disagreements between NAO indices.


2005 ◽  
Vol 133 (10) ◽  
pp. 2894-2904 ◽  
Author(s):  
Ulrike Löptien ◽  
Eberhard Ruprecht

Abstract The North Atlantic Oscillation (NAO) represents the dominant mode of atmospheric variability in the North Atlantic region. In the present study, the role of the synoptic systems (cyclones and anticyclones) in generating the NAO pattern is investigated. To study the intermonthly variations of the NAO, NCEP–NCAR reanalysis data are used, and for the interdecadal variations the results of a 300-yr control integration under present-day conditions of the coupled model ECHAM4/OPYC3 are analyzed. A filtering method is developed for the sea level pressure anomalies. Application of this method to each grid point yields the low-frequency variability in the sea level pressure field that is due to the synoptic systems. The low-frequency variability of the filtered and the original data are in high agreement. This indicates that the low-frequency pressure variability, and with it the variability of the NAO, is essentially caused by the distribution of the synoptic systems. The idea that the distribution of the synoptic systems is the cause of the variation of the NAO is confirmed by high correlation between the latitudinal position of the polar front over the North Atlantic and the NAO index. Since most of the low-frequency variability in sea level pressure can be explained through the distribution of the synoptic systems, the NAO seems to be a reflection of the distribution of the synoptic systems, rather than the source for variations in the cyclone tracks.


2008 ◽  
Vol 65 (2) ◽  
pp. 609-626 ◽  
Author(s):  
Tim Woollings ◽  
Brian Hoskins ◽  
Mike Blackburn ◽  
Paul Berrisford

Abstract This paper proposes the hypothesis that the low-frequency variability of the North Atlantic Oscillation (NAO) arises as a result of variations in the occurrence of upper-level Rossby wave–breaking events over the North Atlantic. These events lead to synoptic situations similar to midlatitude blocking that are referred to as high-latitude blocking episodes. A positive NAO is envisaged as being a description of periods in which these episodes are infrequent and can be considered as a basic, unblocked situation. A negative NAO is a description of periods in which episodes occur frequently. A similar, but weaker, relationship exists between wave breaking over the Pacific and the west Pacific pattern. Evidence is given to support this hypothesis by using a two-dimensional potential-vorticity-based index to identify wave breaking at various latitudes. This is applied to Northern Hemisphere winter data from the 40-yr ECMWF Re-Analysis (ERA-40), and the events identified are then related to the NAO. Certain dynamical precursors are identified that appear to increase the likelihood of wave breaking. These suggest mechanisms by which variability in the tropical Pacific, and in the stratosphere, could affect the NAO.


Sign in / Sign up

Export Citation Format

Share Document