scholarly journals Errors of Mean Dynamic Topography and Geostrophic Current Estimates in China’s Marginal Seas from GOCE and Satellite Altimetry

2014 ◽  
Vol 31 (11) ◽  
pp. 2544-2555 ◽  
Author(s):  
Shuanggen Jin ◽  
Guiping Feng ◽  
Ole Andersen

AbstractThe Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) and satellite altimetry can provide very detailed and accurate estimates of the mean dynamic topography (MDT) and geostrophic currents in China’s marginal seas, such as, the newest high-resolution GOCE gravity field model GO-CONS-GCF-2-TIM-R4 and the new Centre National d’Etudes Spatiales mean sea surface model MSS_CNES_CLS_11 from satellite altimetry. However, errors and uncertainties of MDT and geostrophic current estimates from satellite observations are not generally quantified. In this paper, errors and uncertainties of MDT and geostrophic current estimates from satellite gravimetry and altimetry are investigated and evaluated in China’s marginal seas. The cumulative error in MDT from GOCE is reduced from 22.75 to 9.89 cm when compared to the Gravity Recovery and Climate Experiment (GRACE) gravity field model ITG-Grace2010 results in the region. The errors of the geostrophic currents from GRACE are smaller than from GOCE with the truncation degrees 90 and 120. However, when the truncation degree is higher than 150, the GRACE mean errors increase rapidly and become significantly larger than the GOCE results. The geostrophic velocities based on GOCE-TIM4 have higher accuracy and spatial resolution, and the mean error is about 12.6 cm s−1, which is more consistent with the in situ drifter’s results than using GRACE data.

Engineering ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 860-878
Author(s):  
Wei Liang ◽  
Jiancheng Li ◽  
Xinyu Xu ◽  
Shengjun Zhang ◽  
Yongqi Zhao

2012 ◽  
Vol 329-330 ◽  
pp. 22-30 ◽  
Author(s):  
C. Hirt ◽  
W.E. Featherstone

2012 ◽  
Vol 60 (1) ◽  
pp. 41-48
Author(s):  
Alexandre Bernardino Lopes ◽  
Joseph Harari

The use of geoid models to estimate the Mean Dynamic Topography was stimulated with the launching of the GRACE satellite system, since its models present unprecedented precision and space-time resolution. In the present study, besides the DNSC08 mean sea level model, the following geoid models were used with the objective of computing the MDTs: EGM96, EIGEN-5C and EGM2008. In the method adopted, geostrophic currents for the South Atlantic were computed based on the MDTs. In this study it was found that the degree and order of the geoid models affect the determination of TDM and currents directly. The presence of noise in the MDT requires the use of efficient filtering techniques, such as the filter based on Singular Spectrum Analysis, which presents significant advantages in relation to conventional filters. Geostrophic currents resulting from geoid models were compared with the HYCOM hydrodynamic numerical model. In conclusion, results show that MDTs and respective geostrophic currents calculated with EIGEN-5C and EGM2008 models are similar to the results of the numerical model, especially regarding the main large scale features such as boundary currents and the retroflection at the Brazil-Malvinas Confluence.


2017 ◽  
Vol 11 (2) ◽  
pp. 026017 ◽  
Author(s):  
Isaac Chidi Abazu ◽  
Ami Hassan Md Din ◽  
Kamaludin Mohd Omar

2018 ◽  
Vol 41 (6) ◽  
pp. 517-545 ◽  
Author(s):  
Ole Baltazar Andersen ◽  
Karina Nielsen ◽  
Per Knudsen ◽  
Chris W. Hughes ◽  
Rory Bingham ◽  
...  

2019 ◽  
Vol 36 (7) ◽  
pp. 1255-1266 ◽  
Author(s):  
Mathieu Hamon ◽  
Eric Greiner ◽  
Pierre-Yves Le Traon ◽  
Elisabeth Remy

AbstractSatellite altimetry is one of the main sources of information used to constrain global ocean analysis and forecasting systems. In addition to in situ vertical temperature and salinity profiles and sea surface temperature (SST) data, sea level anomalies (SLA) from multiple altimeters are assimilated through the knowledge of a surface reference, the mean dynamic topography (MDT). The quality of analyses and forecasts mainly depends on the availability of SLA observations and on the accuracy of the MDT. A series of observing system evaluations (OSEs) were conducted to assess the relative importance of the number of assimilated altimeters and the accuracy of the MDT in a Mercator Ocean global 1/4° ocean data assimilation system. Dedicated tools were used to quantify impacts on analyzed and forecast sea surface height and temperature/salinity in deeper layers. The study shows that a constellation of four altimeters associated with a precise MDT is required to adequately describe and predict upper-ocean circulation in a global 1/4° ocean data assimilation system. Compared to a one-altimeter configuration, a four-altimeter configuration reduces the mean forecast error by about 30%, but the reduction can reach more than 80% in western boundary current (WBC) regions. The use of the most recent MDT updates improves the accuracy of analyses and forecasts to the same extent as assimilating a fourth altimeter.


2020 ◽  
Vol 94 (7) ◽  
Author(s):  
P. Zingerle ◽  
R. Pail ◽  
T. Gruber ◽  
X. Oikonomidou

Sign in / Sign up

Export Citation Format

Share Document