dynamic topography
Recently Published Documents


TOTAL DOCUMENTS

427
(FIVE YEARS 144)

H-INDEX

46
(FIVE YEARS 5)

2022 ◽  
Vol 14 (1) ◽  
pp. 240
Author(s):  
Yihao Wu ◽  
Jia Huang ◽  
Xiufeng He ◽  
Zhicai Luo ◽  
Haihong Wang

MDT recovery over coastal regions is challenging, as the mean sea surface (MSS) and geoid/quasi-geoid models are of low quality. The altimetry satellites equipped with the synthetic aperture radar (SAR) altimeters provide more accurate sea surface heights than traditional ones close to the coast. We investigate the role of using the SAR-based MSS in coastal MDT recovery, and the effects introduced by the SAR altimetry data are quantified and assessed. We model MDTs based on the multivariate objective analysis, where the MSS and the recently released satellite-only global geopotential model are combined. The numerical experiments over the coast of Japan and southeastern China show that the use of the SAR-based MSS improves the local MDT. The root mean square (RMS) of the misfits between MDT-modeled with SAR altimetry data and the ocean data is lower than that derived from MDT computed without SAR data—by a magnitude of 4–8 mm. Moreover, the geostrophic velocities derived from MDT modeled with the SAR altimetry data have better fits with buoy data than those derived from MDT modeled without SAR data. In total, our studies highlight the use of SAR altimetry data in coastal MDT recovery.


2021 ◽  
Author(s):  
Karen Williams ◽  
D. Sarah Stamps ◽  
Jacqueline Austermann ◽  
Tahiry Andriantsoa Rajaonarison ◽  
Emmanuel Njinju

2021 ◽  
Author(s):  
Claire A. Mallard ◽  
Tristan Salles

Abstract. The South African landscape displays important lithological and topographical heterogeneities between the eastern, western margins and the plateau. Yet the underlying mechanisms and timings responsible for this peculiar layout remain unclear. While studies have proposed a post-Gondwana uplift driver, others have related these heterogeneities to a more recent evolution induced by deep mantle flow dynamics during the last 30 million years. This theory seems supported by the rapid increase of sediment flux in the Orange basin since the Oligocene. However, the triggers and responses of the South African landscape to dynamic topography are still debated. Here we use a series of numerical simulations forced with Earth data to evaluate the contribution of dynamic topography and precipitation on the Orange river source-to-sink system since the Oligocene. We show that, if the tested uplift histories influence deposits distribution and thicknesses in the Orange sedimentary basin, they poorly affect the large-scale drainage system organisation and only strongly impact the erosion across the catchment for two of the four tested dynamic topography cases. Conversely, it appears that paleo-rainfall regimes are the major forcing mechanism that drives the recent increase of sediment flux in the Orange basin. From our simulations, we find that climate strongly smoothed the dynamic topography signal in the South African landscape and that none of the currently proposed dynamic topography scenarios produce an uplift high enough to drive the pulse of erosion and associated sedimentation observed during the Palaeocene. These findings support the hypothesis of a pre-Oligocene uplift. Our results are crucial to improve our understanding of the recent evolution of the South African landscape.


2021 ◽  
Vol 15 (9) ◽  
pp. 4557-4588
Author(s):  
Adina E. Racoviteanu ◽  
Lindsey Nicholson ◽  
Neil F. Glasser

Abstract. The Himalaya mountain range is characterized by highly glacierized, complex, dynamic topography. The ablation area of Himalayan glaciers often features a highly heterogeneous debris mantle comprising ponds, steep and shallow slopes of various aspects, variable debris thickness, and exposed ice cliffs associated with differing ice ablation rates. Understanding the composition of the supraglacial debris cover is essential for a proper understanding of glacier hydrology and glacier-related hazards. Until recently, efforts to map debris-covered glaciers from remote sensing focused primarily on glacier extent rather than surface characteristics and relied on traditional whole-pixel image classification techniques. Spectral unmixing routines, rarely used for debris-covered glaciers, allow decomposition of a pixel into constituting materials, providing a more realistic representation of glacier surfaces. Here we use linear spectral unmixing of Landsat 8 Operational Land Imager (OLI) images (30 m) to obtain fractional abundance maps of the various supraglacial surfaces (debris material, clean ice, supraglacial ponds and vegetation) across the Himalaya around the year 2015. We focus on the debris-covered glacier extents as defined in the database of global distribution of supraglacial debris cover. The spectrally unmixed surfaces are subsequently classified to obtain maps of composition of debris-covered glaciers across sample regions. We test the unmixing approach in the Khumbu region of the central Himalaya, and we evaluate its performance for supraglacial ponds by comparison with independently mapped ponds from high-resolution Pléiades (2 m) and PlanetScope imagery (3 m) for sample glaciers in two other regions with differing topo-climatic conditions. Spectral unmixing applied over the entire Himalaya mountain range (a supraglacial debris cover area of 2254 km2) indicates that at the end of the ablation season, debris-covered glacier zones comprised 60.9 % light debris, 23.8 % dark debris, 5.6 % clean ice, 4.5 % supraglacial vegetation, 2.1 % supraglacial ponds, and small amounts of cloud cover (2 %), with 1.2 % unclassified areas. The spectral unmixing performed satisfactorily for the supraglacial pond and vegetation classes (an F score of ∼0.9 for both classes) and reasonably for the debris classes (F score of 0.7). Supraglacial ponds were more prevalent in the monsoon-influenced central-eastern Himalaya (up to 4 % of the debris-covered area) compared to the monsoon-dry transition zone (only 0.3 %) and in regions with lower glacier elevations. Climatic controls (higher average temperatures and more abundant precipitation), coupled with higher glacier thinning rates and lower average glacier velocities, further favour pond incidence and the development of supraglacial vegetation. With continued advances in satellite data and further method refinements, the approach presented here provides avenues towards achieving large-scale, repeated mapping of supraglacial features.


2021 ◽  
Author(s):  
Cori Pegliasco ◽  
Antoine Delepoulle ◽  
Rosemary Morrow ◽  
Yannice Faugère ◽  
Gérald Dibarboure

Abstract. This paper presents the new global Mesoscale Eddy Trajectories Atlases (META3.1exp DT all-satellites, https://doi.org/10.24400/527896/a01-2021.001, Pegliasco et al., 2021a and META3.1exp DT two-satellites, https://doi.org/10.24400/527896/a01-2021.002, Pegliasco et al., 2021b), composed of the eddies’ identifications and trajectories produced with altimetric maps. The detection method used is a heritage of the py-eddy-tracker algorithm developed by Mason et al. (2014), optimized to manage with efficiency large datasets, and thus long time series. These products are an improvement of the META2.0 product, produced by SSALTO/DUACS and distributed by AVISO+ (https://aviso.altimetry.fr) with support from CNES, in collaboration with Oregon State University with support from NASA and based on Chelton et al. (2011). META3.1exp provides supplementary information such as the mesoscale eddy shapes with the eddy edges and their maximum speed contour, and the eddy speed profiles from the center to the edge. The tracking algorithm used is based on overlapping contours, includes virtual observations and acts as a filter with respect to the shortest trajectories. The absolute dynamic topography field is now used for eddy detection, instead of the sea level anomaly maps, to better represent the ocean dynamics in the more energetic areas and close to coasts and islands. To evaluate the impact of the changes from META2.0 to META3.1exp, a comparison methodology has been applied. The similarity coefficient is based on the ratio between the eddies' overlap and their cumulative area, and allows an extensive comparison of the different datasets in terms of geographic distribution, statistics over the main physical characteristics, changes in the lifetime of the trajectories, etc. After evaluating the impact of each change separately, we conclude that the major differences between META3.1exp and META2.0 are due to the change in the detection algorithm. META3.1exp contains smaller eddies and trajectories lasting at least 10 days that were not available in the distributed META2.0 product. Nevertheless, 55 % of the structures in META2.0 are similar in META3.1exp, ensuring the continuity between the two products, and the physical characteristics of the common eddies are close. Geographically, the eddy distribution mainly differs in the strong current regions, where the mean dynamic topography gradients are sharp. The additional information on the eddy contours allows more accurate collocation of mesoscale structures with data from other sources, so META3.1exp is recommended for multi-disciplinary applications.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mohammad Hanif Hamden ◽  
Ami Hassan Md Din ◽  
Dudy Darmawan Wijaya ◽  
Mohd Yunus Mohd Yusoff ◽  
Muhammad Faiz Pa’suya

Contemporary Universiti Teknologi Malaysia 2020 Mean Sea Surface (UTM20 MSS) and Mean Dynamic Topography (UTM20 MDT) models around Malaysian seas are introduced in this study. These regional models are computed via scrutinizing along-track sea surface height (SSH) points and specific interpolation methods. A 1.5-min resolution of UTM20 MSS is established by integrating 27 years of along-track multi-mission satellite altimetry covering 1993–2019 and considering the 19-year moving average technique. The Exact Repeat Mission (ERM) collinear analysis, reduction of sea level variability of geodetic mission (GM) data, crossover adjustment, and data gridding are presented as part of the MSS computation. The UTM20 MDT is derived using a pointwise approach from the differences between UTM20 MSS and the local gravimetric geoid. UTM20 MSS and MDT reliability are validated with the latest Technical University of Denmark (DTU) and Collecte Localisation Services (CLS) models along with coastal tide gauges. The findings presented that the UTM20, CLS15, and DTU18 MSS models exhibit good agreement. Besides, UTM20 MDT is also in good agreement with CLS18 and DTU15 MDT models with an accuracy of 5.1 and 5.5 cm, respectively. The results also indicate that UTM20 MDT statistically achieves better accuracy than global models compared to tide gauges. Meanwhile, the UTM20 MSS accuracy is within 7.5 cm. These outcomes prove that UTM20 MSS and MDT models yield significant improvement compared to the previous regional models developed by UTM, denoted as MSS1 and MSS2 in this study.


2021 ◽  
Author(s):  
Carmen Braz ◽  
Sabin Zahirovic ◽  
Tristan Salles ◽  
Nicolas Flament ◽  
Lauren Harrington ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Fan Wu ◽  
Wei Zheng ◽  
Zongqiang Liu ◽  
Xuezhi Sun

The accurate modeled GNSS-R reflection delay, which is indispensable for the quantification, modeling, and correction of the GNSS-R altimetry sea-state bias, can be obtained based on the accurate modeled position of the specular point. At present, the reflection surface model of the specular point positioning still has the mean dynamic topography (MDT) error and the deviation of the vertical (DOV) error relative to the instantaneous sea surface. In this study, the following studies have been carried out. Based on the ship-borne GNSS-R observations in China seas, we introduced various elevation parameters including the MDT to correct the elevation error of the reflection surface. We introduced the DOV based on the elevation correction, and the DOV correction positioning method was proposed to correct the slope error of the reflection surface. The specular point was positioned on the instantaneous sea reflection surface. We verified the instantaneous sea reflection surface model and the specular point positioning results, analyzed the relationship between the position correction distance and the reflection incident angle, and discussed the spatial distribution characteristics of the MDT correction distance. The results showed that the reflection surface modeling and the specular point positioning were accurate. The positioning error increased to varying degrees with the increase of the reflection incident angle. The MDT correction improved the positioning by 0.91 m, and the DOV correction further improved the positioning by 0.12 m. Based on the combined application of the two kinds of correction positioning, the positioning was comprehensively improved by 0.99 m. The MDT correction of China seas gradually increased from the north to south. While in the regional sea areas, it gradually decreased from the north to south and showed randomness. The relative position between the antennas and their random changes introduced uncertainty, which can be reduced by integration. The new instantaneous sea reflection surface model and the corresponding specular point positioning method can provide accurate modeled reflection delay for the sea-state bias correction of ship-borne GNSS-R observations, and they can be extended to satellite-borne global observations.


Sign in / Sign up

Export Citation Format

Share Document