scholarly journals Smoothing and Interpolating Noisy GPS Data with Smoothing Splines

2020 ◽  
Vol 37 (3) ◽  
pp. 449-465 ◽  
Author(s):  
Jeffrey J. Early ◽  
Adam M. Sykulski

AbstractA comprehensive method is provided for smoothing noisy, irregularly sampled data with non-Gaussian noise using smoothing splines. We demonstrate how the spline order and tension parameter can be chosen a priori from physical reasoning. We also show how to allow for non-Gaussian noise and outliers that are typical in global positioning system (GPS) signals. We demonstrate the effectiveness of our methods on GPS trajectory data obtained from oceanographic floating instruments known as drifters.

Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1364-1371 ◽  
Author(s):  
Shuki Ronen ◽  
Christopher L. Liner

Conventional processing, such as Kirchhoff dip moveout (DMO) and prestack full migration, are based on independent imaging of subsets of the data before stacking or amplitude variation with offset (AVO) analysis. Least‐squares DMO (LSDMO) and least‐squares migration (LSMig) are a family of developing processing methods which are based on inversion of reverse DMO and demigration operators. LSDMO and LSMig find the earth model that best fits the data and a priori assumptions which can be imposed as constraints. Such inversions are more computer intensive, but have significant advantages compared to conventional processing when applied to irregularly sampled data. Various conventional processes are approximations of the inversions in LSDMO and LSMig. Often, processing is equivalent to using the transpose of a matrix which LSDMO/LSMig inverts. Such transpose processing is accurate when the data sampling is adequate. In practice, costly survey design, real‐time coverage quality control, in‐fill acquisition, redundancy editing, and prestack interpolation, are used to create a survey geometry such that the transpose is a good approximation of the inverse. Normalized DMO and migration are approximately equivalent to following the application of the above transpose processing by a diagonal correction. However, in most cases, the required correction is not actually diagonal. In such cases LSDMO and LSMig can produce earth models with higher resolution and higher fidelity than normalized DMO and migration. The promise of LSMig and LSDMO is reduced acquisition cost, improved resolution, and reduced acquisition footprint. The computational cost, and more importantly turn‐around time, is a major factor in the commercialization of these methods. With parallel computing, these methods are now becoming practical.


2021 ◽  
Author(s):  
◽  
Tim Nikolas Jahn

Diese Arbeit beschäftigt sich mit linearen inversen Problemen, wie sie in einer Vielzahl an Anwendungen auftreten. Diese Probleme zeichnen sich dadurch aus, dass sie typischerweise schlecht gestellt sind, was in erster Linie die Stabilität betrifft. Selbst kleinste Messfehler haben enorme Konsequenzen für die Rekonstruktion der zu bestimmenden Größe. Um eine robuste Rekonstruktion zu ermöglichen, muss das Problem regularisiert, dass heißt durch eine ganze Familie abgeänderter, stabiler Approximationen ersetzt werden. Die konkrete Wahl aus der Familie, die sogenannte Parameterwahlstrategie, stützt sich dann auf zusätzliche ad hoc Annahmen über den Messfehler. Typischerweise ist dies im deterministischen Fall die Kenntnis einer oberen Schranke an die Norm des Datenfehlers, oder im stochastischen Fall, die Kenntnis der Verteilung des Fehlers, beziehungsweise die Einschränkung auf eine bestimmte Klasse von Verteilungen, zumeist Gaußsche. In der vorliegenden Arbeit wird untersucht, wie sich diese Informationen unter der Annahme der Wiederholbarkeit der Messung gewinnen lassen. Die Daten werden dabei aus mehreren Messungen gemittelt, welche einer beliebigen, unbekannten Verteilung folgen, wobei die zur Lösung des Problems unweigerlich notwendige Fehlerschranke geschätzt wird. Auf Mittelwert und Schätzer wird dann ein klassisches Regularisierungsverfahren angewandt. Als Regularisierungen werden größtenteils Filter-basierte Verfahren behandelt, die sich auf die Spektralzerlegung des Problems stützen. Als Parameterwahlstrategien werden sowohl einfache a priori-Wahlen betrachtet, als auch das Diskrepanzprinzip als adaptives Verfahren. Es wird Konvergenz für unbekannte beliebige Fehlerverteilungen mit endlicher Varianz sowie für Weißes Rauschen (bezüglich allgemeiner Diskretisierungen) nachgewiesen. Schließlich wird noch die Konvergenz des Diskrepanzprinzips für ein stochastisches Gradientenverfahren gezeigt, als erste rigorose Analyse einer adaptiven Stoppregel für ein solches nicht Filter-basiertes Regularisierungsverfahren.


Informatica ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 33-52 ◽  
Author(s):  
Pengfei HAO ◽  
Chunlong YAO ◽  
Qingbin MENG ◽  
Xiaoqiang YU ◽  
Xu LI

2012 ◽  
Vol 71 (17) ◽  
pp. 1541-1555
Author(s):  
V. A. Baranov ◽  
S. V. Baranov ◽  
A. V. Nozdrachev ◽  
A. A. Rogov

2013 ◽  
Vol 72 (11) ◽  
pp. 1029-1038
Author(s):  
M. Yu. Konyshev ◽  
S. V. Shinakov ◽  
A. V. Pankratov ◽  
S. V. Baranov

Sign in / Sign up

Export Citation Format

Share Document