scholarly journals Identifying Doppler Velocity Contamination Caused by Migrating Birds. Part II: Bayes Identification and Probability Tests

2005 ◽  
Vol 22 (8) ◽  
pp. 1114-1121 ◽  
Author(s):  
Shun Liu ◽  
Qin Xu ◽  
Pengfei Zhang

Abstract Based on the Bayesian statistical decision theory, a probabilistic quality control (QC) technique is developed to identify and flag migrating-bird-contaminated sweeps of level II velocity scans at the lowest elevation angle using the QC parameters presented in Part I. The QC technique can use either each single QC parameter or all three in combination. The single-parameter QC technique is shown to be useful for evaluating the effectiveness of each QC parameter based on the smallness of the tested percentages of wrong decision by using the ground truth information (if available) or based on the smallness of the estimated probabilities of wrong decision (if there is no ground truth information). The multiparameter QC technique is demonstrated to be much better than any of the three single-parameter QC techniques, as indicated by the very small value of the tested percentages of wrong decision for no-flag decisions (not contaminated by migrating birds). Since the averages of the estimated probabilities of wrong decision are quite close to the tested percentages of wrong decision, they can provide useful information about the probability of wrong decision when the multiparameter QC technique is used for real applications (with no ground truth information).

2002 ◽  
Vol 357 (1420) ◽  
pp. 419-448 ◽  
Author(s):  
Wilson S. Geisler ◽  
Randy L. Diehl

In recent years, there has been much interest in characterizing statistical properties of natural stimuli in order to better understand the design of perceptual systems. A fruitful approach has been to compare the processing of natural stimuli in real perceptual systems with that of ideal observers derived within the framework of Bayesian statistical decision theory. While this form of optimization theory has provided a deeper understanding of the information contained in natural stimuli as well as of the computational principles employed in perceptual systems, it does not directly consider the process of natural selection, which is ultimately responsible for design. Here we propose a formal framework for analysing how the statistics of natural stimuli and the process of natural selection interact to determine the design of perceptual systems. The framework consists of two complementary components. The first is a maximum fitness ideal observer, a standard Bayesian ideal observer with a utility function appropriate for natural selection. The second component is a formal version of natural selection based upon Bayesian statistical decision theory. Maximum fitness ideal observers and Bayesian natural selection are demonstrated in several examples. We suggest that the Bayesian approach is appropriate not only for the study of perceptual systems but also for the study of many other systems in biology.


Metrologia ◽  
2005 ◽  
Vol 42 (5) ◽  
pp. 442-448 ◽  
Author(s):  
Jean-Pascal Laedermann ◽  
Jean-François Valley ◽  
François O Bochud

2009 ◽  
Vol 27 (12) ◽  
pp. 4435-4448 ◽  
Author(s):  
M. P. Morris ◽  
P. B. Chilson ◽  
T. J. Schuur ◽  
A. Ryzhkov

Abstract. The character of precipitation detected at the surface is the final product of many microphysical interactions in the cloud above, the combined effects of which may be characterized by the observed drop size distribution (DSD). This necessitates accurate retrieval of the DSD from remote sensing data, especially radar as it offers large areal coverage, high spatial resolution, and rigorous quality control and testing. Combined instrument observations with a UHF wind profiler, an S-band polarimetric weather radar, and a video disdrometer are analyzed for two squall line events occuring during the calendar year 2007. UHF profiler Doppler velocity spectra are used to estimate the DSD aloft, and are complemented by DSDs retrieved from an exponential model applied to polarimetric data. Ground truth is provided by the disdrometer. A complicating factor in the retrieval from UHF profiler spectra is the presence of ambient air motion, which can be corrected using the method proposed by Teshiba et al. (2009), in which a comparison between idealized Doppler spectra calculated from the DSDs retrieved from KOUN and those retrieved from contaminated wind profiler spectra is performed. It is found that DSDs measured using the distrometer at the surface and estimated using the wind profiler and polarimetric weather radar generally showed good agreement. The DSD retrievals using the wind profiler were improved when the estimates of the vertical wind were included into the analysis, thus supporting the method of Teshiba et al. (2009). Furthermore, the the study presents a method of investigating the time and height structure of DSDs.


Sign in / Sign up

Export Citation Format

Share Document